我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用os.makedirs()。
def sync_helpers(include, src, dest, options=None): if not os.path.isdir(dest): os.makedirs(dest) global_options = parse_sync_options(options) for inc in include: if isinstance(inc, str): inc, opts = extract_options(inc, global_options) sync(src, dest, inc, opts) elif isinstance(inc, dict): # could also do nested dicts here. for k, v in six.iteritems(inc): if isinstance(v, list): for m in v: inc, opts = extract_options(m, global_options) sync(src, dest, '%s.%s' % (k, inc), opts)
def mkdir(path, owner='root', group='root', perms=0o555, force=False): """Create a directory""" log("Making dir {} {}:{} {:o}".format(path, owner, group, perms)) uid = pwd.getpwnam(owner).pw_uid gid = grp.getgrnam(group).gr_gid realpath = os.path.abspath(path) path_exists = os.path.exists(realpath) if path_exists and force: if not os.path.isdir(realpath): log("Removing non-directory file {} prior to mkdir()".format(path)) os.unlink(realpath) os.makedirs(realpath, perms) elif not path_exists: os.makedirs(realpath, perms) os.chown(realpath, uid, gid) os.chmod(realpath, perms)
def create_directory_if_not_exists(logger, path): """ Creates 'path' if it does not exist If creation fails, an exception will be thrown :param logger: the logger :param path: the path to ensure it exists """ try: os.makedirs(path) except OSError as ex: if ex.errno == errno.EEXIST and os.path.isdir(path): pass else: log_critical_error(logger, ex, 'An error happened trying to create ' + path) raise
def save_exported_media_to_file(logger, export_dir, media_file, filename, extension): """ Write exported media item to disk at specified location with specified file name. Any existing file with the same name will be overwritten. :param logger: the logger :param export_dir: path to directory for exports :param media_file: media file to write to disc :param filename: filename to give exported image :param extension: extension to give exported image """ if not os.path.exists(export_dir): logger.info("Creating directory at {0} for media files.".format(export_dir)) os.makedirs(export_dir) file_path = os.path.join(export_dir, filename + '.' + extension) if os.path.isfile(file_path): logger.info('Overwriting existing report at ' + file_path) try: with open(file_path, 'wb') as out_file: shutil.copyfileobj(media_file.raw, out_file) del media_file except Exception as ex: log_critical_error(logger, ex, 'Exception while writing' + file_path + ' to file')
def main(): args = get_args() if not os.path.exists(args.outdir): os.makedirs(args.outdir) sources = [args.fastq, args.bam, args.summary] sourcename = ["fastq", "bam", "summary"] datadf = nanoget.get_input( source=[n for n, s in zip(sourcename, sources) if s][0], files=[f for f in sources if f][0], threads=args.threads, readtype=args.readtype, combine="track") if args.name: output = args.name else: output = os.path.join(args.outdir, args.prefix + "NanoStats.txt") write_stats([datadf], output)
def create_directory_if_not_exists(self, path): """ Creates 'path' if it does not exist If creation fails, an exception will be thrown :param path: the path to ensure it exists """ try: os.makedirs(path) except OSError as ex: if ex.errno == errno.EEXIST and os.path.isdir(path): pass else: self.log_critical_error(ex, 'An error happened trying to create ' + path) raise
def downloadExamples(examples,connType,conn=False): print("===========") print("DOWNLOADING") print("===========") try: os.makedirs(kResultStorageFolder) except OSError: if not os.path.isdir(kResultStorageFolder): raise leaveconn = True if not conn: leaveconn = False conn = getDB(connType) for example in examples: print("---------\nEXAMPLE: {}\n-------".format(example)) example, room = example.rsplit('_',1) getExampleFromDB(example, connType, conn) if not leaveconn: conn.close()
def workthread(item, user_agent,path): strurl = 'http://yxpjw.club'+item[0] picname = item[1] print('????%s...........................\n' %(picname)) req = request.Request(strurl) req.add_header('User-Agent',user_agent) response = request.urlopen(req) content = response.read().decode('gbk') strurl2 = re.search(r'^(.*)/',strurl).group(0) print('https headers...............%s'%(strurl2)) #destname = os.path.join(path,picname+'.txt') #with open(destname, 'w',encoding='gbk') as file: #file.write(content) destdir = os.path.join(path,picname) os.makedirs(destdir) page = 1 while(1): content = getpagedata(content,destdir,page,strurl2) if not content: break page = page + 1 print('%s?????????\n'%(picname))
def save_to_path(self, filepath): """Save retrieved data to file at ``filepath``. .. versionadded: 1.9.6 :param filepath: Path to save retrieved data. """ filepath = os.path.abspath(filepath) dirname = os.path.dirname(filepath) if not os.path.exists(dirname): os.makedirs(dirname) self.stream = True with open(filepath, 'wb') as fileobj: for data in self.iter_content(): fileobj.write(data)
def get(self, resource): """ Get a resource into the cache, :param resource: A :class:`Resource` instance. :return: The pathname of the resource in the cache. """ prefix, path = resource.finder.get_cache_info(resource) if prefix is None: result = path else: result = os.path.join(self.base, self.prefix_to_dir(prefix), path) dirname = os.path.dirname(result) if not os.path.isdir(dirname): os.makedirs(dirname) if not os.path.exists(result): stale = True else: stale = self.is_stale(resource, path) if stale: # write the bytes of the resource to the cache location with open(result, 'wb') as f: f.write(resource.bytes) return result
def delete_account(self, account): """ Deletes the given `account` from the `keystore_dir` directory. Then deletes it from the `AccountsService` account manager instance. In fact, moves it to another location; another directory at the same level. """ app = self.app keystore_dir = app.services.accounts.keystore_dir deleted_keystore_dir = PyWalib.deleted_account_dir(keystore_dir) # create the deleted account dir if required if not os.path.exists(deleted_keystore_dir): os.makedirs(deleted_keystore_dir) # "removes" it from the file system account_filename = os.path.basename(account.path) deleted_account_path = os.path.join( deleted_keystore_dir, account_filename) shutil.move(account.path, deleted_account_path) # deletes it from the `AccountsService` account manager instance account_service = self.get_account_list() account_service.accounts.remove(account)
def test_delete_account_already_exists(self): """ If the destination (backup/trash) directory where the account is moved already exists, it should be handled gracefully. This could happens if the account gets deleted, then reimported and deleted again, refs: https://github.com/AndreMiras/PyWallet/issues/88 """ pywalib = self.pywalib account = self.helper_new_account() # creates a file in the backup/trash folder that would conflict # with the deleted account deleted_keystore_dir = PyWalib.deleted_account_dir(self.keystore_dir) os.makedirs(deleted_keystore_dir) account_filename = os.path.basename(account.path) deleted_account_path = os.path.join( deleted_keystore_dir, account_filename) # create that file open(deleted_account_path, 'a').close() # then deletes the account and verifies it worked self.assertEqual(len(pywalib.get_account_list()), 1) pywalib.delete_account(account) self.assertEqual(len(pywalib.get_account_list()), 0)
def generate_dataset_file(num_rows, num_cols, num_cats=4, rate=1.0): """Generate a random dataset. Returns: The path to a gzipped pickled data table. """ path = os.path.join(DATA, '{}-{}-{}-{:0.1f}.dataset.pkz'.format( num_rows, num_cols, num_cats, rate)) if os.path.exists(path): return path print('Generating {}'.format(path)) if not os.path.exists(DATA): os.makedirs(DATA) dataset = generate_dataset(num_rows, num_cols, num_cats, rate) pickle_dump(dataset, path) return path
def generate_model_file(num_rows, num_cols, num_cats=4, rate=1.0): """Generate a random model. Returns: The path to a gzipped pickled model. """ path = os.path.join(DATA, '{}-{}-{}-{:0.1f}.model.pkz'.format( num_rows, num_cols, num_cats, rate)) V = num_cols K = V * (V - 1) // 2 if os.path.exists(path): return path print('Generating {}'.format(path)) if not os.path.exists(DATA): os.makedirs(DATA) dataset_path = generate_dataset_file(num_rows, num_cols, num_cats, rate) dataset = pickle_load(dataset_path) table = dataset['table'] tree_prior = np.zeros(K, dtype=np.float32) config = make_config(learning_init_epochs=5) model = train_model(table, tree_prior, config) pickle_dump(model, path) return path
def create_default_project(cls, path, name='DefaultProject'): """Creates default maya project structure along with a suitable workspace.mel file. :param str path: The path that the default project structure will be created. :return: """ project_path = os.path.join(path, name) # lets create the structure for dir_name in cls.default_project_structure.split('\n'): dir_path = os.path.join(project_path, dir_name) try: os.makedirs(dir_path) except OSError: pass # create the workspace.mel workspace_mel_path = os.path.join(project_path, 'workspace.mel') with open(workspace_mel_path, 'w+') as f: f.writelines(cls.default_workspace_content) return project_path
def get_config_file_path(cls): if not cls.IS_GLOBAL: # local to this directory base_path = os.path.join('.') else: base_path = os.path.expanduser('~') if not os.access(base_path, os.W_OK): base_path = '/tmp' base_path = os.path.join(base_path, '.polyaxon') if not os.path.exists(base_path): try: os.makedirs(base_path) except OSError: # Except permission denied and potential race conditions # in multi-threaded environments. logger.error('Could not create config directory `{}`'.format(base_path)) return os.path.join(base_path, cls.CONFIG_FILE_NAME)
def trash_old_stuff(trashlist, trashpath, newpath): if isinstance(trashlist, list): for old_location in trashlist: # Get the subfolders needed to be created path_within_destination=os.path.relpath(old_location, trashpath) # Create what will be the destination path new_location=os.path.join(newpath, path_within_destination) # Make sure all the relevant subfolders exist in the destination if not os.path.exists(os.path.dirname(new_location)): os.makedirs(os.path.dirname(new_location)) # Even though we've been double-checking paths all along, let's just make one last check if os.path.exists(old_location) and os.path.isdir(newpath): os.rename(old_location, new_location) logging.info("Moving %s to %s\n" % (old_location, new_location)) else: logging.error("One of %s or %s does not exist\n" % (old_location, new_location)) else: logging.error("%s is not a valid list\n" % trashlist) # Function that checks paths are writable
def download_sifts_from_ebi(identifier, override=False): """ Downloads a SIFTS xml from the EBI FTP to the filesystem. :param identifier: (str) PDB ID :param override: (boolean) :return: (side effects) """ filename = "{}.xml.gz".format(identifier) outputfile = os.path.join(config.db_root, config.db_sifts, filename) os.makedirs(os.path.join(config.db_root, config.db_sifts), exist_ok=True) url_root = config.ftp_sifts url_endpoint = "{}.xml.gz".format(identifier) url = url_root + url_endpoint Downloader(url=url, outputfile=outputfile, decompress=True, override=override) return
def download_data_from_uniprot(identifier, file_format="fasta", override=False): """ Downloads a UniProt fasta, gff or txt to the filesystem. :param identifier: (str) UniProt ID :param file_format: (str) endpoint :param override: (boolean) :return: (side effects) """ file_format = file_format.lstrip('.') if file_format in ['txt', 'fasta', 'gff']: filename = "{}.{}".format(identifier, file_format) outputfile = os.path.join(config.db_root, config.db_uniprot, filename) os.makedirs(os.path.join(config.db_root, config.db_uniprot), exist_ok=True) url_root = config.http_uniprot url_endpoint = "{}.{}".format(identifier, file_format) url = url_root + url_endpoint Downloader(url=url, outputfile=outputfile, decompress=True, override=override) else: raise ValueError("File format {} is not currently implemented..." "".format(file_format)) return
def download_alignment_from_pfam(identifier, alignment_size="seed", override=False): """ Downloads a MSA in Stockholm format from Pfam to the filesystem. :param identifier: (str) PFam ID :param alignment_size: (str) either "seed" or "full" :param override: (boolean) :return: (side effects) """ filename = "{}.sth".format(identifier) outputfile = os.path.join(config.db_root, config.db_pfam, filename) os.makedirs(os.path.join(config.db_root, config.db_pfam), exist_ok=True) url_root = config.http_pfam url_endpoint = ("family/{}/alignment/{}" "".format(identifier, alignment_size)) url = url_root + url_endpoint Downloader(url=url, outputfile=outputfile, decompress=True, override=override) return
def predict_episodes(self, model, episode_paths, n=None, out_dir=None, prefix="model/"): if n is not None: episode_paths = np.random.choice(episode_paths, n, replace=False) if out_dir is not None: os.makedirs(out_dir, exist_ok=True) for ep, episode_path in enumerate(episode_paths): episode = frame.load_episode(episode_path) features = self.load_features_episode(episode) prediction = model.predict_proba(features) for i in range(len(prediction)): episode.frames[i].info[prefix + "score"] = prediction[i] episode.frames[i].info[prefix + "label"] = model.apply_threshold(prediction[i]) out_path = episode_path if out_dir is not None: out_path = os.path.join(out_dir, "{}.pkl.gz".format(ep)) frame.save_episode(out_path, episode)
def convert_episode_to_tf_records(base_directory, new_directory, dataloader, path): episode = frame.load_episode(path) features, labels = dataloader.load_features_and_labels_episode(episode) assert path.rfind(base_directory) > -1 new_path = path[path.rfind(base_directory) + len(base_directory) + 1:] new_path = os.path.splitext(new_path)[0] new_path = os.path.splitext(new_path)[0] new_path = os.path.join(new_directory, new_path + ".tfrecord") options = tf.python_io.TFRecordOptions( compression_type=tf.python_io.TFRecordCompressionType.GZIP) os.makedirs(new_path, exist_ok=True) for i, f in enumerate(episode.frames): writer = tf.python_io.TFRecordWriter( os.path.join(new_path, "{}.tfrecord".format(i)), options=options) example = tf.train.Example(features=tf.train.Features(feature={ 'action': _int64_feature([f.action]), 'label': _int64_feature([f.label] if f.label is not None else []), 'observation': _float_feature(f.observation.reshape(-1)), 'observation_shape': _int64_feature(f.observation.shape), 'image': _bytes_feature([f.image.tobytes()]), 'image_shape': _int64_feature(f.image.shape), })) writer.write(example.SerializeToString()) writer.close() return new_path
def main(): """Main function""" if ARGS.type == "copy": generate_fn = make_copy elif ARGS.type == "reverse": generate_fn = make_reverse # Generate dataset examples = list(generate_fn(ARGS.num_examples, ARGS.min_len, ARGS.max_len)) try: os.makedirs(ARGS.output_dir) except OSError: if not os.path.isdir(ARGS.output_dir): raise # Write train data train_sources, train_targets = zip(*examples) write_parallel_text(train_sources, train_targets, ARGS.output_dir)
def add_security_data(adds, deletes): if not hasattr(security_list, 'using_copy'): raise Exception('add_security_data must be used within ' 'security_list_copy context') directory = os.path.join( security_list.SECURITY_LISTS_DIR, "leveraged_etf_list/20150127/20150125" ) if not os.path.exists(directory): os.makedirs(directory) del_path = os.path.join(directory, "delete") with open(del_path, 'w') as f: for sym in deletes: f.write(sym) f.write('\n') add_path = os.path.join(directory, "add") with open(add_path, 'w') as f: for sym in adds: f.write(sym) f.write('\n')
def write_state_to_disk(cls, state, emission_rate=None): state_dir = cls.__module__ + '.' + cls.__name__ full_dir = base_state_dir + '/' + state_dir if not os.path.exists(full_dir): os.makedirs(full_dir) if emission_rate is not None: name = 'State_Version_' + emission_rate + \ str(state['obj_state'][VERSION_LABEL]) else: name = 'State_Version_' + str(state['obj_state'][VERSION_LABEL]) full_path = full_dir + '/' + name f = open(full_path, 'w') pickle.dump(state, f) f.close()
def write_sts_token(self, profile, access_key_id, secret_access_key, session_token): """ Writes STS auth information to credentials file """ region = 'us-east-1' output = 'json' if not os.path.exists(self.creds_dir): os.makedirs(self.creds_dir) config = RawConfigParser() if os.path.isfile(self.creds_file): config.read(self.creds_file) if not config.has_section(profile): config.add_section(profile) config.set(profile, 'output', output) config.set(profile, 'region', region) config.set(profile, 'aws_access_key_id', access_key_id) config.set(profile, 'aws_secret_access_key', secret_access_key) config.set(profile, 'aws_session_token', session_token) with open(self.creds_file, 'w+') as configfile: config.write(configfile) print("Temporary credentials written to profile: %s" % profile) print("Invoke using: aws --profile %s <service> <command>" % profile)
def write_stage_alerts(stage, path, alerts_file="alerts.list"): alerts = load_alerts() out_file = os.path.join(path, alerts_file) if not os.path.exists(path): os.makedirs(path) out_handle = open(out_file, "w") keys = ["metric", "threshold", "compare", "action", "message"] if not alerts.has_key(stage): martian.throw("No alerts found for stage %s" % stage) for alert in alerts[stage]: out_handle.write("#\n") out_handle.write(alert["metric"]+"\n") out_handle.write(str(alert["threshold"])+"\n") out_handle.write(alert["compare"]+"\n") out_handle.write(alert["action"]+"\n") out_handle.write(alert["message"]+"\n") out_handle.close()
def init_env(tree=['default']): dump_loc = '/var/cache/acbs/tarballs/' tmp_loc = '/var/cache/acbs/build/' print("----- Welcome to ACBS - %s -----" % (acbs_version)) try: if not os.path.isdir(dump_loc): os.makedirs(dump_loc) if not os.path.isdir(tmp_loc): os.makedirs(tmp_loc) except: raise IOError('\033[93mFailed to make work directory\033[0m!') if os.path.exists('/etc/acbs_forest.conf'): tree_loc = parse_acbs_conf(tree[0]) if tree_loc is not None: os.chdir(tree_loc) else: sys.exit(1) else: if not write_acbs_conf(): sys.exit(1) return
def __init__(self): self.config_dir = os.path.expanduser("~/.config/ytbrowser/") self.defaults['format'] = "mkv" self.defaults['quality'] = "bestvideo" self.defaults['preferredcodec'] = "mp3" self.defaults['preferredquality'] = 192 self.defaults['developerKey'] = "AIzaSyDFuK00HWV0fd1VMb17R8GghRVf_iQx9uk" self.defaults['apiServiceName'] = "youtube" self.defaults['apiVersion'] = "v3" if not os.path.exists(self.config_dir): os.makedirs(self.config_dir) if not os.path.exists(self.config_dir + "config.yml"): open(self.config_dir + "config.yml", "a").close() with open(self.config_dir + "config.yml", 'r') as ymlfile: self.user_settings = yaml.load(ymlfile) if self.user_settings is None: self.user_settings = {}
def dest_path(self, path): path = os.path.normpath(path) if not path.startswith(self.__dest_path_prefix): path = os.path.join(self.__dest_path_prefix, os.path.splitdrive(path)[1].lstrip(os.sep)) try: os.makedirs(path) except OSError as exc: if exc.errno != errno.EEXIST: raise self.__dest_path = path
def get_dataset(dataset_path='Data/Train_Data'): # Getting all data from data path: try: X = np.load('Data/npy_train_data/X.npy') Y = np.load('Data/npy_train_data/Y.npy') except: inputs_path = dataset_path+'/input' images = listdir(inputs_path) # Geting images X = [] Y = [] for img in images: img_path = inputs_path+'/'+img x_img = get_img(img_path).astype('float32').reshape(64, 64, 3) x_img /= 255. y_img = get_img(img_path.replace('input/', 'mask/mask_')).astype('float32').reshape(64, 64, 1) y_img /= 255. X.append(x_img) Y.append(y_img) X = np.array(X) Y = np.array(Y) # Create dateset: if not os.path.exists('Data/npy_train_data/'): os.makedirs('Data/npy_train_data/') np.save('Data/npy_train_data/X.npy', X) np.save('Data/npy_train_data/Y.npy', Y) X, X_test, Y, Y_test = train_test_split(X, Y, test_size=0.1, random_state=42) return X, X_test, Y, Y_test
def train_model(model, X, X_test, Y, Y_test): if not os.path.exists('Data/Checkpoints/'): os.makedirs('Data/Checkpoints/') checkpoints = [] checkpoints.append(ModelCheckpoint('Data/Checkpoints/best_weights.h5', monitor='val_loss', verbose=0, save_best_only=True, save_weights_only=True, mode='auto', period=1)) checkpoints.append(TensorBoard(log_dir='Data/Checkpoints/./logs', histogram_freq=0, write_graph=True, write_images=False, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None)) model.fit(X, Y, batch_size=batch_size, epochs=epochs, validation_data=(X_test, Y_test), shuffle=True, callbacks=checkpoints) return model
def save_model(model): if not os.path.exists('Data/Model/'): os.makedirs('Data/Model/') model_json = model.to_json() with open("Data/Model/model.json", "w") as model_file: model_file.write(model_json) # serialize weights to HDF5 model.save_weights("Data/Model/weights.h5") print('Model and weights saved') return
def sync_pyfile(src, dest): src = src + '.py' src_dir = os.path.dirname(src) logging.info('Syncing pyfile: %s -> %s.' % (src, dest)) if not os.path.exists(dest): os.makedirs(dest) shutil.copy(src, dest) if os.path.isfile(os.path.join(src_dir, '__init__.py')): shutil.copy(os.path.join(src_dir, '__init__.py'), dest) ensure_init(dest)
def __init__(self, basename, input_dir, verbose=False, replace_missing=True, filter_features=False): '''Constructor''' self.use_pickle = False # Turn this to true to save data as pickle (inefficient) self.basename = basename if basename in input_dir: self.input_dir = input_dir else: self.input_dir = input_dir + "/" + basename + "/" if self.use_pickle: if os.path.exists ("tmp"): self.tmp_dir = "tmp" elif os.path.exists ("../tmp"): self.tmp_dir = "../tmp" else: os.makedirs("tmp") self.tmp_dir = "tmp" info_file = os.path.join (self.input_dir, basename + '_public.info') self.info = {} self.getInfo (info_file) self.feat_type = self.loadType (os.path.join(self.input_dir, basename + '_feat.type'), verbose=verbose) self.data = {} Xtr = self.loadData (os.path.join(self.input_dir, basename + '_train.data'), verbose=verbose, replace_missing=replace_missing) Ytr = self.loadLabel (os.path.join(self.input_dir, basename + '_train.solution'), verbose=verbose) Xva = self.loadData (os.path.join(self.input_dir, basename + '_valid.data'), verbose=verbose, replace_missing=replace_missing) Xte = self.loadData (os.path.join(self.input_dir, basename + '_test.data'), verbose=verbose, replace_missing=replace_missing) # Normally, feature selection should be done as part of a pipeline. # However, here we do it as a preprocessing for efficiency reason idx=[] if filter_features: # add hoc feature selection, for the example... fn = min(Xtr.shape[1], 1000) idx = data_converter.tp_filter(Xtr, Ytr, feat_num=fn, verbose=verbose) Xtr = Xtr[:,idx] Xva = Xva[:,idx] Xte = Xte[:,idx] self.feat_idx = np.array(idx).ravel() self.data['X_train'] = Xtr self.data['Y_train'] = Ytr self.data['X_valid'] = Xva self.data['X_test'] = Xte
def mkdir(d): if not os.path.exists(d): os.makedirs(d)
def mkdir(d): ''' Create a new directory''' if not os.path.exists(d): os.makedirs(d)
def _create_home(self): if not os.path.isdir(self._HOME + '/' + self._CONFIG_DIR): os.makedirs(self._HOME + '/' + self._CONFIG_DIR) with os.fdopen(os.open(self._HOME + '/' + self._CONFIG_DIR + '/' + self._CONFIG_FILE_NAME, os.O_WRONLY | os.O_CREAT, 0o600), 'w'): pass with os.fdopen(os.open(self._HOME + '/' + self._CONFIG_DIR + '/' + self._CREDENTIALS_FILE_NAME, os.O_WRONLY | os.O_CREAT, 0o600), 'w'): pass
def gen_makeself(conf_dir,alias): mkself_tmp = os.path.join(conf_dir,'tmp') conf_mkself = os.path.join(conf_dir,'Installers') if not os.path.exists(conf_mkself): os.makedirs(conf_mkself) if not os.path.exists(mkself_tmp): os.makedirs(mkself_tmp) if sys.platform.startswith('darwin'): alias_app = os.path.join(conf_dir,'{}.app'.format(alias)) if os.path.exists(alias_app): run_command('cp -R {} {}'.format(alias_app,mkself_tmp)) gen_osx_plist(alias,mkself_tmp) gen_st_setup(alias,mkself_tmp) mkself_installer = 'bash "{}" "{}" "{}/{}_Installer" "Stitch" bash st_setup.sh'.format(mkself_exe, mkself_tmp, conf_mkself,alias) st_log.info(mkself_installer) st_log.info(run_command(mkself_installer)) shutil.rmtree(mkself_tmp) else: binry_dir = os.path.join(conf_dir,'Binaries') alias_dir = os.path.join(binry_dir, alias) if os.path.exists(alias_dir): run_command('cp -R {} {}'.format(alias_dir,mkself_tmp)) gen_lnx_daemon(alias,mkself_tmp) gen_st_setup(alias,mkself_tmp) mkself_installer = 'bash "{}" "{}" "{}/{}_Installer" "Stitch" bash st_setup.sh'.format(mkself_exe, mkself_tmp, conf_mkself,alias) st_log.info(mkself_installer) st_log.info(run_command(mkself_installer)) shutil.rmtree(mkself_tmp)
def save(self, path): if not os.path.exists(path): os.makedirs(path) self.src_vocab.save(path+"/vocab.src") self.tgt_vocab.save(path+"/vocab.tgt") self.m.save(path+"/params") with open(path+"/args", "w") as f: pickle.dump(self.args, f)
def write_combined_file(lang_code, all_lang_paths, all_en_paths): src_combined_filename = "train" + "_" + lang_code + "_en."+ lang_code + ".txt" tgt_combined_filename = "train" + "_" + lang_code + "_en.en" + ".txt" if not os.path.exists(output_dir + lang_code): os.makedirs(output_dir+lang_code) write_lang = [] write_en = [] for corp in all_lang_paths: for filename in corp: with open(filename) as f: doc = f.read() write_lang.append(doc) for corp in all_en_paths: for filename in corp: with open(filename) as f: doc = f.read() write_en.append(doc) for doc1, doc2 in zip(write_lang, write_en): if len(doc1.split("\n"))!=len(doc2.split("\n")): continue else: with open(output_dir + lang_code + "/" + src_combined_filename, 'a') as wf: wf.write(doc1) with open(output_dir + lang_code + "/" + tgt_combined_filename, 'a') as wf: wf.write(doc2)
def new_dir(self, path): try: os.makedirs(path) except Exception as e: raise e