Python plotly.graph_objs 模块,Scatter3d() 实例源码

我们从Python开源项目中,提取了以下9个代码示例,用于说明如何使用plotly.graph_objs.Scatter3d()

项目:lddmm-ot    作者:jeanfeydy    | 项目源码 | 文件源码
def plot_traj(self, qt, **kwargs) :
        if self.vis_mode == '2D' :
            trajs = self.periodize_traj(qt)
            for traj in trajs :
                # (r,theta) -> (y,x)
                curve = go.Scatter(x = traj[:,1], y = traj[:,0], mode = 'lines', hoverinfo='none', **kwargs)
                self.current_axis.append(curve)
        elif self.vis_mode == '3D' :
            if type(qt[0]) is not list :
                qt = [qt]
            if self.upsample_trajs :
                qt = list( self.upsample(q) for q in qt )
            traj = list( self.I(q = q) for q in qt )
            separator = array([None]* 3).reshape((1,3))
            traj = vstack( vstack((i, separator)) for i in traj )
            curve = go.Scatter3d(x = traj[:,0], y = traj[:,1], z = traj[:,2], mode = 'lines', hoverinfo='none', **kwargs)
            self.current_axis.append(curve)

    # Vector field display
项目:lddmm-ot    作者:jeanfeydy    | 项目源码 | 文件源码
def quiver_3D(self, qt, vt, **kwargs) :
        if qt.shape[1] == 2 :
            Qt = self.I(qt)
            Vt = self.dI(qt, vt)
        elif qt.shape[1] == 3 :
            Qt = qt
            Vt = vt

        # quiver3 is not implemented by plotly.js :
        # we have to settle for a poor derivative...
        H = Qt
        T = H + Vt
        arrows = go.Scatter3d(
            x = (hstack(tuple( (H[i,0], T[i,0], None) for i in range(T.shape[0]) ))),
            y = (hstack(tuple( (H[i,1], T[i,1], None) for i in range(T.shape[0]) ))),
            z = (hstack(tuple( (H[i,2], T[i,2], None) for i in range(T.shape[0]) ))),
            mode = 'lines',
            **kwargs
        )
        self.current_axis.append(arrows)
项目:neural-segmentation    作者:melsner    | 项目源码 | 文件源码
def plotVAEplotly(self, logdir, prefix, ctable=None, reverseUtt=False, batch_size=128, debug=False):
        ticks = [[-1,-0.5,0,0.5,1]]*self.latentDim
        samplePoints = np.array(np.meshgrid(*ticks)).T.reshape(-1,3)
        input_placeholder = np.ones(tuple([len(samplePoints)] + list(self.phon.output_shape[1:-1]) + [1]))
        preds = self.decode_word([samplePoints, input_placeholder], batch_size=batch_size)
        if reverseUtt:
            preds = getYae(preds, reverseUtt)
        reconstructed = reconstructXae(np.expand_dims(preds.argmax(-1), -1), ctable, maxLen=5)

        data = [go.Scatter3d(
            x = samplePoints[:,0],
            y = samplePoints[:,1],
            z = samplePoints[:,2],
            text = reconstructed,
            mode='text'
        )]
        layout = go.Layout()
        fig = go.Figure(data=data, layout=layout)
        plotly.offline.plot(fig, filename=logdir + '/' + prefix + '_VAEplot.html', auto_open=False)
项目:CombinX    作者:SimCMinMax    | 项目源码 | 文件源码
def traceStatsPoints(statPoints, dps):
    statCoords = np.array([np.dot(sp, COORDS) for sp in statPoints])
    x, y, z = statCoords.transpose()
    statTooltips = np.array([tooltipText(sp, v, max(dps)) for (sp, v) in zip(statPoints, dps)])
    sizes = 6 + 6 * (dps >= max(dps) - (max(dps) - min(dps)) * 0.05) + 6 * (dps == max(dps))
    colors = dps
    tickValues = generateTickValues(dps, generateTickStep(dps))
    tickTexts = generateTickTexts(dps, tickValues)
    return go.Scatter3d(
        x=x,
        y=y,
        z=z,
        text=statTooltips,
        hoverinfo='text',
        mode='markers',
        marker=dict(
            size=sizes,
            line=dict(
                color='rgba(32, 32, 32, 0.3)',
                width=0.5
            ),
            color=colors,
            colorbar=go.ColorBar(
                title='DPS',
                tickvals=tickValues,
                ticktext=tickTexts,
            ),
            colorscale=[
                [0., 'rgba(40,55,255, 0.3)'],
                [0.95, 'rgba(255, 60, 25, 0.7)'],
                [0.9501, 'rgba(255, 60, 25, 1)'],
                [0.9999, 'rgba(255, 60, 25, 1)'],
                [1., 'rgba(25, 225, 55, 1)']
            ],
        ),
        showlegend=False,
    )
项目:CombinX    作者:SimCMinMax    | 项目源码 | 文件源码
def traceStatLabels():
    x, y, z = COORDS.transpose()
    return go.Scatter3d(
        x=x,
        y=y,
        z=z,
        hoverinfo='none',
        mode='text',
        text=['Crit', 'Haste', 'Mastery', 'Versatility'],
        textposition='top',
        showlegend=False,
    )
项目:lddmm-ot    作者:jeanfeydy    | 项目源码 | 文件源码
def marker_3D(self, q, **kwargs) :
        if q.shape[1] == 2 :
            Q = self.I(q = q)
        elif q.shape[1] == 3 :
            Q = q
        points = go.Scatter3d(x = Q[:,0], y = Q[:,1], z = Q[:,2], mode = 'markers', hoverinfo='name', **kwargs)
        self.current_axis.append(points)
项目:lddmm-ot    作者:jeanfeydy    | 项目源码 | 文件源码
def show_glyphs(self, scale = 0.03, axis = 'Z') :
        "Displays triangles on the spherical manifold."
        if self.mode == 'whole sphere' or self.mode == 'spherical blackboard' :
            # We will embed self.triangles in the euclidean space R^3,
            # in the neighborhood of the sphere S(1/2).

            if axis == 'X' :
                theta = self.theta
                phi   = self.phi
                e_theta = vstack( ( -sin(theta)        ,  cos(theta) * cos(phi), cos(theta) * sin(phi) ) ).T
                e_phi   = vstack( ( zeros(theta.shape) , -sin(theta) * sin(phi), sin(theta) * cos(phi) ) ).T
            elif axis == 'Z' :
                theta = self.theta_Z
                phi   = self.phi_Z
                e_theta = - vstack( (  cos(theta) * cos(phi), cos(theta) * sin(phi), -sin(theta)         ) ).T
                e_phi   = + vstack( ( - sin(phi),  cos(phi), zeros(theta.shape)  ) ).T

            # We don't want glyphs to overlap
            e_theta = scale * e_theta
            e_phi   = scale * e_phi

            glyphs = []
            separator = [None, None, None]
            for i in range(self.triangles.shape[0]) :
                point = array([self.X[i], self.Y[i], self.Z[i]])
                glyphs.append(array([
                    point + real(self.triangles[i,0]) * e_phi[i] + imag(self.triangles[i,0]) * e_theta[i] , # A
                    point + real(self.triangles[i,1]) * e_phi[i] + imag(self.triangles[i,1]) * e_theta[i] , # B
                    point + real(self.triangles[i,2]) * e_phi[i] + imag(self.triangles[i,2]) * e_theta[i] , # C
                    point + real(self.triangles[i,0]) * e_phi[i] + imag(self.triangles[i,0]) * e_theta[i] , # A
                    separator
                ]))
            glyphs = vstack(glyphs)
            curves = go.Scatter3d(x = glyphs[:,0], y = glyphs[:,1], z = glyphs[:,2], mode = 'lines', hoverinfo='none', name = 'Triangles')
            self.current_axis.append(curves)
项目:finch    作者:chrisranderson    | 项目源码 | 文件源码
def scatter_3d(xs, ys, zs):
  plotly.offline.plot([Scatter3d(
    x=xs,
    y=ys,
    z=zs,
    mode='markers'
  )])
项目:tRECS    作者:TeeOhh    | 项目源码 | 文件源码
def create_plot(self):
    # '''
    #   description: create plotly figure
    #   returns:plotly figure
    # '''
        colormap = self.make_colormap()
        _lda_keys = self.get_lda_keys()

        if self.dim =="2d":
            # reduce the dimesnsions of X_topics
            # angle value close to 1 means sacrificing accuracy for speed
            # pca initializtion usually leads to better results 
            tsne_model = TSNE(n_components=2, verbose=1, random_state=0, angle=.99, init='pca')

            # 20-D -> 2-D
            tsne_lda = tsne_model.fit_transform(self.X_topics_current)

            #create tracem
            trace1 = go.Scatter(
            x = tsne_lda[:, 0],
            y = tsne_lda[:, 1],
            mode = 'markers',
            marker =dict(color = colormap[_lda_keys]),
            text= self.titles_current
            )

            data = [trace1]
            layout = go.Layout(xaxis = dict(visible = False),yaxis = dict(visible = False))
            fig2d = go.Figure(data=data, layout = layout)
            return fig2d

        #same but with 3d graph 
        else:
            tsne_model = TSNE(n_components=3, verbose=1, random_state=0, angle=.99, init='pca')

            # 20-D -> 3-D
            tsne_lda = tsne_model.fit_transform(self.X_topics_current)
            trace1 = go.Scatter3d(
                x = tsne_lda[:, 0],
                y = tsne_lda[:, 1],
                z =  tsne_lda[:, 2],
                mode = 'markers',
                marker = dict(color = colormap[_lda_keys]),
                text = self.titles_current
            )

            data = [trace1]
            layout = go.Layout(scene = dict(xaxis = dict(visible = False),yaxis = dict(visible = False), zaxis = dict(visible = False) ))
            fig3d = go.Figure(data=data, layout = layout)
            return fig3d