Python plotly 模块,plotly() 实例源码

我们从Python开源项目中,提取了以下8个代码示例,用于说明如何使用plotly.plotly()

项目:neural-segmentation    作者:melsner    | 项目源码 | 文件源码
def plotVAEplotly(self, logdir, prefix, ctable=None, reverseUtt=False, batch_size=128, debug=False):
        ticks = [[-1,-0.5,0,0.5,1]]*self.latentDim
        samplePoints = np.array(np.meshgrid(*ticks)).T.reshape(-1,3)
        input_placeholder = np.ones(tuple([len(samplePoints)] + list(self.phon.output_shape[1:-1]) + [1]))
        preds = self.decode_word([samplePoints, input_placeholder], batch_size=batch_size)
        if reverseUtt:
            preds = getYae(preds, reverseUtt)
        reconstructed = reconstructXae(np.expand_dims(preds.argmax(-1), -1), ctable, maxLen=5)

        data = [go.Scatter3d(
            x = samplePoints[:,0],
            y = samplePoints[:,1],
            z = samplePoints[:,2],
            text = reconstructed,
            mode='text'
        )]
        layout = go.Layout()
        fig = go.Figure(data=data, layout=layout)
        plotly.offline.plot(fig, filename=logdir + '/' + prefix + '_VAEplot.html', auto_open=False)
项目:lddmm-ot    作者:jeanfeydy    | 项目源码 | 文件源码
def download_plotlyjs(download_url):
    warnings.warn('''
        `download_plotlyjs` is deprecated and will be removed in the
        next release. plotly.js is shipped with this module, it is no
        longer necessary to download this bundle separately.
    ''', DeprecationWarning)
    pass
项目:lddmm-ot    作者:jeanfeydy    | 项目源码 | 文件源码
def get_plotlyjs():
    path = os.path.join('offline', 'plotly.min.js')
    plotlyjs = resource_string('plotly', path).decode('utf-8')
    return plotlyjs
项目:lddmm-ot    作者:jeanfeydy    | 项目源码 | 文件源码
def enable_mpl_offline(resize=False, strip_style=False,
                       verbose=False, show_link=True,
                       link_text='Export to plot.ly', validate=True):
    """
    Convert mpl plots to locally hosted HTML documents.

    This function should be used with the inline matplotlib backend
    that ships with IPython that can be enabled with `%pylab inline`
    or `%matplotlib inline`. This works by adding an HTML formatter
    for Figure objects; the existing SVG/PNG formatters will remain
    enabled.

    (idea taken from `mpld3._display.enable_notebook`)

    Example:
from plotly.offline import enable_mpl_offline
import matplotlib.pyplot as plt

enable_mpl_offline()

fig = plt.figure()
x = [10, 15, 20, 25, 30]
y = [100, 250, 200, 150, 300]
plt.plot(x, y, "o")
fig
```
"""
init_notebook_mode()

ip = IPython.core.getipython.get_ipython()
formatter = ip.display_formatter.formatters['text/html']
formatter.for_type(matplotlib.figure.Figure,
                   lambda fig: iplot_mpl(fig, resize, strip_style, verbose,
                                         show_link, link_text, validate))

```

项目:B-Tax    作者:open-source-economics    | 项目源码 | 文件源码
def asset_bubble(output_by_assets):
    """Creates a crossfilter bokeh plot of results by asset

        :output_by_assets: Contains output by asset
        :type output_by_assets: dataframe
        :returns:
        :rtype:
    """
    import numpy as np
    import pandas as pd
    import plotly.plotly as py
    import plotly.graph_objs as go

    df_all = output_by_assets.copy()

    df = df_all[df_all['asset_category']!='Intellectual Property'].copy()

    # sort categories
    df['sort_order'] = df['asset_category']
    df['sort_order'].replace(asset_category_order,inplace=True)
    df.sort_values(by="sort_order",axis=0,ascending=True,inplace=True)
    df.reset_index(inplace=True)


    # update asset_category names for better printing
    df['asset_category'].replace(asset_categories_for_print,inplace=True)

    df.iplot(kind='bubble', x='metr_c', y='asset_category', size='assets', text='Asset',
             xTitle='Marginal Effective Tax Rate', yTitle='Asset Category',
             filename='BubbleChart.png')
项目:evologger    作者:freeranger    | 项目源码 | 文件源码
def write(timestamp, temperatures):

    if invalidConfig:
        if plotly_debugEnabled:
            plotly_logger.debug('Invalid config, aborting write')
            return []

    debug_message = 'Writing to ' + plugin_name
    if not plotly_writeEnabled:
        debug_message += ' [SIMULATED]'
    plotly_logger.debug(debug_message)

    debug_text = '%s: ' % timestamp

    if plotly_writeEnabled:
        # Stream tokens from plotly
        tls.set_credentials_file(stream_ids=stream_ids_array)

    try:
        if plotly_writeEnabled:
            py.sign_in(plotly_username, plotly_api_key)

        for temperature in temperatures:
            debug_text += "%s (%s A" % (temperature.zone, temperature.actual)
            if temperature.target is not None:
                debug_text += ", %s T" % temperature.target
            debug_text += ') '

            if plotly_writeEnabled:
                if temperature.zone in zones:
                    stream_id = zones[temperature.zone]
                    s = py.Stream(stream_id)
                    s.open()
                    ts = timestamp.strftime('%Y-%m-%d %H:%M:%S')
                    s.write(dict(x=ts, y=temperature.actual))
                    s.close()
                else:
                    plotly_logger.debug("Zone %s does not have a stream id, ignoring")

    except Exception, e:
        plotly_logger.error("Plot.ly API error - aborting write\n%s", e)

    if plotly_debugEnabled:
        plotly_logger.debug(debug_text)
项目:TabularSASR    作者:SimsGautam    | 项目源码 | 文件源码
def plot_results(avg, avg_upper, avg_lower):

    n = len(avg)
    x =[i+1 for i in range(n+1)]
    x_rev = x[::-1]

    y1 = list(avg)
    y_upper = list(avg_upper)
    y_lower = list(avg_lower)
    y_lower = [0,0] + y_lower[::-1]

    trace1 = Scatter(
        x=x+x_rev,
        y=y_upper+y_lower,
        fill='tozerox',
        fillcolor='rgba(0,100,80,0.2)',
        line=Line(color='transparent'),
        showlegend=False,
        name='Fair'
    )

    trace2 = Scatter(
        x=x,
        y=y1,
        line=Line(color='rgb(0,100,80)'),
        mode='lines',
        name='Fair'
    )

    data = Data([trace1, trace2])

    layout = Layout(
        paper_bgcolor='rgb(255,255,255)',
        plot_bgcolor='rgb(229,229,229)',
        xaxis=XAxis(
            gridcolor='rgb(255,255,255)',
            range=[1,n+1],
            showgrid=True,
            showline=False,
            showticklabels=True,
            tickcolor='rgb(127,127,127)',
            ticks='outside',
            zeroline=False
        ),
        yaxis=YAxis(
            gridcolor='rgb(255,255,255)',
            showgrid=True,
            showline=False,
            showticklabels=True,
            tickcolor='rgb(127,127,127)',
            ticks='outside',
            zeroline=False
        )
    )

    plotly.offline.plot({"data": data, "layout": layout})
项目:Question-Answering    作者:arianhosseini    | 项目源码 | 文件源码
def gen_heatmap(model_name):

    evaluator, valid_stream, ds = build_evaluator(model_name)
    analysis_path = os.path.join('heatmap_analysis', model_name + ".html")

    out_file = open(analysis_path, 'w')
    out_file.write('<html>')
    out_file.write('<body style="background-color:white">')

    printed = 0;
    for batch in valid_stream.get_epoch_iterator(as_dict=True):

        if batch["context"].shape[1] > 150:
            continue;

        evaluator.initialize_aggregators()
        evaluator.process_batch(batch)
        analysis_results = evaluator.get_aggregated_values()
        q_c_attention = analysis_results["question_context_attention"]

        context_words = [ds.vocab[i]+' '+str(index) for index,i in enumerate(batch["context"][0])]
        question_words = [str(index)+' '+ ds.vocab[i] for index, i in enumerate(batch["question"][0])]
        answer_words = [ds.vocab[i] for i in batch["answer"][0]]

        out_file.write('answer: '+' '.join(answer_words))
        out_file.write('<br>')

        x= context_words
        y= question_words
        z = q_c_attention[0]
        # print z.shape

        data = [
            go.Heatmap(z=z,x=x,y=y,colorscale='Viridis')
        ]
        div = plotly.offline.plot(data,auto_open=False, output_type='div')
        out_file.write(div)
        out_file.write('<br>')
        out_file.write('<br>')

        printed += 1
        if printed >= 20:
            break;


    out_file.write('</body>')
    out_file.write('</html>')
    out_file.close()
    print "done ;)"