我们从Python开源项目中,提取了以下10个代码示例,用于说明如何使用progressbar.FormatLabel()。
def knn_masked_data(trX,trY,missing_data_dir, input_shape, k): raw_im_data = np.loadtxt(join(script_dir,missing_data_dir,'index.txt'),delimiter=' ',dtype=str) raw_mask_data = np.loadtxt(join(script_dir,missing_data_dir,'index_mask.txt'),delimiter=' ',dtype=str) # Using 'brute' method since we only want to do one query per classifier # so this will be quicker as it avoids overhead of creating a search tree knn_m = KNeighborsClassifier(algorithm='brute',n_neighbors=k) prob_Y_hat = np.zeros((raw_im_data.shape[0],int(np.max(trY)+1))) total_images = raw_im_data.shape[0] pbar = progressbar.ProgressBar(widgets=[progressbar.FormatLabel('\rProcessed %(value)d of %(max)d Images '), progressbar.Bar()], maxval=total_images, term_width=50).start() for i in range(total_images): mask_im=load_image(join(script_dir,missing_data_dir,raw_mask_data[i][0]), input_shape,1).reshape(np.prod(input_shape)) mask = np.logical_not(mask_im > eps) # since mask is 1 at missing locations v_im=load_image(join(script_dir,missing_data_dir,raw_im_data[i][0]), input_shape, 255).reshape(np.prod(input_shape)) rep_mask = np.tile(mask,(trX.shape[0],1)) # Corrupt whole training set according to the current mask corr_trX = np.multiply(trX, rep_mask) knn_m.fit(corr_trX, trY) prob_Y_hat[i,:] = knn_m.predict_proba(v_im.reshape(1,-1)) pbar.update(i) pbar.finish() return prob_Y_hat
def __init__(self, name, max_value=100, history_len=5, display=True, display_data={'train':['loss', 'accuracy'], 'test':['loss', 'accuracy']}, level=logging.INFO, train_log_mode='TRAIN_PROGRESS', test_log_mode='TEST_PROGRESS'): super(ProgressbarLogger, self).__init__( name, level=level, display=display, logfile=None, train_log_mode=train_log_mode, test_log_mode=test_log_mode) self.train_log_data = {} self.test_log_data = {} self.max_value = max_value self.history_len = history_len self.display_data = display_data self.mode['TRAIN_PROGRESS'] = self.log_train_progress self.mode['TEST_PROGRESS'] = self.log_test_progress # create logging format self.widgets = [progressbar.FormatLabel('(%(value)d of %(max)s)'), ' ', progressbar.Percentage(), ' ', progressbar.Bar()] self.dynamic_data = {k+'_'+kk: 0.0 for k in display_data.keys() for kk in display_data[k]} diff_data = {'diff_'+k+'_'+kk: 0.0 for k in display_data.keys() for kk in display_data[k]} self.dynamic_data.update(diff_data) for t in display_data.keys(): ddstr = ' [' + t + ']' for s in display_data[t]: value_name = t + '_' + s ddstr = ddstr + ' ' + s + ':' + '%(' + value_name + ').3f (%(diff_' + value_name + ').3f)' self.widgets.append(progressbar.FormatLabel(ddstr)) self.widgets.extend(['|', progressbar.FormatLabel('Time: %(elapsed)s'), '|', progressbar.AdaptiveETA()])
def update(self, n_total, n_lc_updated, n_scaling_out, n_scaled_out, n_services_installed, n_scaling_in, n_complete, *args): msg = '[Patching {0} ASGs]: '.format(n_total) stages = [] if n_lc_updated is not 0: stages.append('{0} Launch Configs Updated'.format(n_lc_updated)) if n_scaling_out is not 0: stages.append('{0} Scaling Out'.format(n_scaling_out)) if n_scaled_out is not 0: stages.append('{0} Installing Services'.format(n_scaled_out)) if n_scaling_in is not 0: stages.append('{0} Scaling In'.format(n_scaling_in)) if n_complete is not 0: stages.append('{0} Complete'.format(n_complete)) msg += ', '.join(stages) self.widgets[4] = FormatLabel(msg) t1 = (5 / n_total) * n_lc_updated t2 = (10 / n_total) * n_scaling_out t3 = (30 / n_total) * n_scaled_out t4 = (70 / n_total) * n_services_installed t5 = (75 / n_total) * n_scaling_in t6 = (100 / n_total) * n_complete self.total_progress = t1 + t2 + t3 + t4 + t5 + t6
def print_status_stream(title, stream): widgets = [title, FormatLabel(''), ' ', Percentage(), ' ', Bar(), ' ', RotatingMarker()] bar = None if sys.stderr.isatty(): bar = progressbar.ProgressBar(widgets=widgets, max_value=255) def print_error(status): print(status['error']) def print_status(status): progress = status.get('progressDetail') if progress: widgets[1] = FormatLabel("%12s" % (status['status'])) prog = int(round(255 * ((progress['current'] / progress['total'])))) if bar is not None: bar.update(prog) def print_unknown(status): print(status) for line in stream: status = json.loads(line.decode('utf8')) if 'error' in status: print_error(status) elif 'status' in status: print_status(status) else: print_unknown(status)
def __init__(self): self.stop_running = threading.Event() self.progress_thread = threading.Thread(target=self.init_progress) self.progress_thread.daemon = True spinner = RotatingMarker() spinner.INTERVAL = datetime.timedelta(milliseconds=100) self.widgets = [spinner, ' ', Percentage(), ' ', FormatLabel('Calculating patch requirements'), ' ', Bar(), ' ', FormatLabel('')] self.progress = ProgressBar(redirect_stdout=True, widgets=self.widgets, max_value=100) self.progress.update(0)
def finish(self, total): msg = '[Patching {0} ASGs]: {0} Complete'.format(total) self.widgets[4] = FormatLabel(msg) self.progress.finish()
def init_progress(self): while not self.stop_running.is_set(): p = self.total_progress if math.isnan(p) or p is None or p == 0: p = 1 t = datetime.datetime.utcnow() s = (t - self.start_time).total_seconds() elapsed = progressbar.utils.format_time(s) self.widgets[8] = FormatLabel('Elapsed Time: {0}'.format(elapsed)) self.progress.update(p) time.sleep(0.2)
def create_widgets(self): label = self.label bar = Bar(left='[', right=']') fmtlabel = FormatLabel(" %(value)d/%(max)d ") (w, _) = get_terminal_size() lw = int(w * 0.5) if len(label)>lw-1: s = lw-4 label = label[:s] label += "... " else: label = label.ljust(lw, ' ') return [ label, bar, fmtlabel ]
def convert_dataset(args): try: if args.min_rects > args.max_rects: raise ValueError('min_rect must be less than or equal to max_rect.') if args.min_width > args.max_width: raise ValueError('min_width must be less than or equal to max_width.') try: os.makedirs(args.output_dir) except OSError as exc: # Python >2.5 if exc.errno == errno.EEXIST and os.path.isdir(args.output_dir): pass else: raise ValueError('output_dir argument is not a valid path.') total_images = len(args.filenames) params = zip(args.filenames, [args] * total_images) pool = Pool(initializer=init_worker) pbar = progressbar.ProgressBar(widgets=[progressbar.FormatLabel('\rProcessed %(value)d of %(max)d Images '), progressbar.Bar()], maxval=total_images, term_width=50).start() try: results = pool.imap_unordered(corrupt_source_image, params, chunksize=max(int(math.sqrt(len(args.filenames)))/2, 10)) for i in range(len(args.filenames)): next(results) pbar.update(i+1) pool.close() pool.join() pbar.finish() except KeyboardInterrupt: pool.terminate() pool.join() pbar.finish() raise except ValueError as e: print print 'Bad parameters:', e raise e except KeyboardInterrupt: print if __name__ == '__main__': print 'User stopped generation!' raise except: print print "Unexpected error:", sys.exc_info()[0] raise # Main routine