Python pylab 模块,show() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用pylab.show()

项目:NetPower_TestBed    作者:Vignesh2208    | 项目源码 | 文件源码
def freq_from_HPS(sig, fs):
    """
    Estimate frequency using harmonic product spectrum (HPS)

    """
    windowed = sig * blackmanharris(len(sig))

    from pylab import subplot, plot, log, copy, show

    # harmonic product spectrum:
    c = abs(rfft(windowed))
    maxharms = 3
    #subplot(maxharms, 1, 1)
    #plot(log(c))
    for x in range(2, maxharms):
        a = copy(c[::x])  # Should average or maximum instead of decimating
        # max(c[::x],c[1::x],c[2::x],...)
        c = c[:len(a)]
        i = argmax(abs(c))
        true_i = parabolic(abs(c), i)[0]
        print 'Pass %d: %f Hz' % (x, fs * true_i / len(windowed))
        c *= a
        #subplot(maxharms, 1, x)
        #plot(log(c))
    #show()
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def view_trigger_snippets_bis(trigger_snippets, elec_index, save=None):
    fig = pylab.figure()
    ax = fig.add_subplot(1, 1, 1)
    for n in xrange(0, trigger_snippets.shape[2]):
        y = trigger_snippets[:, elec_index, n]
        x = numpy.arange(- (y.size - 1) / 2, (y.size - 1) / 2 + 1)
        b = 0.5 + 0.5 * numpy.random.rand()
        ax.plot(x, y, color=(0.0, 0.0, b), linestyle='solid')
    ax.grid(True)
    ax.set_xlim([numpy.amin(x), numpy.amax(x)])
    ax.set_xlabel("time")
    ax.set_ylabel("amplitude")
    if save is None:
        pylab.show()
    else:
        pylab.savefig(save)
        pylab.close(fig)
    return
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def view_dataset(X, color='blue', title=None, save=None):
    n_components = 2
    pca = PCA(n_components)
    pca.fit(X)
    x = pca.transform(X)
    fig = pylab.figure()
    ax = fig.add_subplot(1, 1, 1)
    ax.scatter(x[:, 0], x[:, 1], c=color, s=5, lw=0.1)
    ax.grid(True)
    if title is None:
        ax.set_title("Dataset ({} samples)".format(X.shape[0]))
    else:
        ax.set_title(title + " ({} samples)".format(X.shape[0]))
    ax.set_xlabel("1st component")
    ax.set_ylabel("2nd component")
    if save is None:
        pylab.show()
    else:
        pylab.savefig(save)
        pylab.close(fig)
    return
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def view_loss_curve(losss, title=None, save=None):
    '''Plot loss curve'''
    x_min = 1
    x_max = len(losss) - 1
    fig = pylab.figure()
    ax = fig.gca()
    ax.semilogy(range(x_min, x_max + 1), losss[1:], color='blue', linestyle='solid')
    ax.grid(True, which='both')
    if title is None:
        ax.set_title("Loss curve")
    else:
        ax.set_title(title)
    ax.set_xlabel("iteration")
    ax.set_ylabel("loss")
    ax.set_xlim([x_min - 1, x_max + 1])
    if save is None:
        pylab.show()
    else:
        pylab.savefig(save)
        pylab.close(fig)
    return
项目:audio_scripts    作者:audiofilter    | 项目源码 | 文件源码
def display_wav(filename):
    input_data = read(filename)
    audio_in = input_data[1]
    samples = len(audio_in)
    fig = pylab.figure();
    print samples/44100.0," seconds"
    k = 0
    plot_data_out = []
    for i in xrange(samples):
        plot_data_out.append(audio_in[k]/32768.0)
        k = k+1
    pdata = numpy.array(plot_data_out, dtype=numpy.float)
    pylab.plot(pdata)
    pylab.grid(True)
    pylab.ion()
    pylab.show()
项目:ndparse    作者:neurodata    | 项目源码 | 文件源码
def display_pr_curve(precision, recall):
    # following examples from sklearn

    # TODO:  f1 operating point

    import pylab as plt
    # Plot Precision-Recall curve
    plt.clf()
    plt.plot(recall, precision, label='Precision-Recall curve')
    plt.xlabel('Recall')
    plt.ylabel('Precision')
    plt.ylim([0.0, 1.05])
    plt.xlim([0.0, 1.0])
    plt.title('Precision-Recall example: Max f1={0:0.2f}'.format(max_f1))
    plt.legend(loc="lower left")
    plt.show()
项目:office-interoperability-tools    作者:milossramek    | 项目源码 | 文件源码
def disp(iimg, label = "", gray=False):
    """ Display an image using pylab
    """
    try:
        import pylab
        dimage = iimg.copy()
        if iimg.ndim==3:
            dimage[...,0] = iimg[...,2]
            dimage[...,2] = iimg[...,0]

        pylab.imshow(dimage, interpolation='none')
        if gray: pylab.gray()
        #pylab.gca().format_coord = format_coord
        pylab.text(1500, -30, label)
        pylab.axis('off')
        pylab.show()
    except ImportError:
        print "Module pylab not available"
项目:GoodEnoughAlgs    作者:elsander    | 项目源码 | 文件源码
def PlotMultipleRuns(Alg, nruns=20, fname=None):
    '''Plot "nruns" runs of a given algorithm to show performance
    and variability across runs.'''
    if fname:
        runs = scipy.genfromtxt(fname)
    else:
        runs = []
        for i in range(nruns):
            bestSol, fitHistory = tsp.TSP(200, Alg, 3000, 30, seed=None,
                                          coordfile='tmp.txt')
            runs.append(fitHistory)
        fname = 'MultRuns-' + str(Alg) + '.txt'
        runs = scipy.array(runs)
        scipy.savetxt(fname, runs)

    # plotting
    Xs = scipy.linspace(0, runs.shape[1] * 1000, runs.shape[1])
    for i in range(runs.shape[0]):
        pl.plot(Xs, runs[i, :])
    pl.show()
项目:GoodEnoughAlgs    作者:elsander    | 项目源码 | 文件源码
def LongMC3(fname=None):
    '''Plot a single long MC3 run to demonstrate high performance
    but slow convergence.'''
    if fname:
        run = scipy.genfromtxt(fname)
    else:
        bestSol, run = tsp.TSP(200, 'MC3', 20000, 10, seed=None,
                               coordfile='tmp.txt')
        fname = 'ExampleOutput/MC3-Long.txt'
        run = scipy.array(run)
        scipy.savetxt(fname, run)

    # plotting
    Xs = range(0, run.shape[0] * 1000, 1000)
    pl.plot(Xs, run)
    pl.show()
项目:GoodEnoughAlgs    作者:elsander    | 项目源码 | 文件源码
def LongSA(fname=None):
    '''Plot a single long SA run to demonstrate performance under slower
    cooling schedule.'''
    if fname:
        run = scipy.genfromtxt(fname)
    else:
        bestSol, run = tsp.TSP(200, 'SA', 20000, 'placeholder', seed=None,
                               coordfile='tmp.txt')
        fname = 'ExampleOutput/SA-Long.txt'
        run = scipy.array(run)
        scipy.savetxt(fname, run)

    # plotting
    Xs = range(0, run.shape[0] * 1000, 1000)
    pl.plot(Xs, run)
    pl.show()
项目:PorousMediaLab    作者:biogeochemistry    | 项目源码 | 文件源码
def PlotProps(pars):
    import numpy as np
    import pylab as pl
    import vanGenuchten as vg
    psi = np.linspace(-10, 2, 200)
    pl.figure
    pl.subplot(3, 1, 1)
    pl.plot(psi, vg.thetaFun(psi, pars))
    pl.ylabel(r'$\theta(\psi) [-]$')
    pl.subplot(3, 1, 2)
    pl.plot(psi, vg.CFun(psi, pars))
    pl.ylabel(r'$C(\psi) [1/m]$')
    pl.subplot(3, 1, 3)
    pl.plot(psi, vg.KFun(psi, pars))
    pl.xlabel(r'$\psi [m]$')
    pl.ylabel(r'$K(\psi) [m/d]$')
    # pl.show()
项目:NADE    作者:MarcCote    | 项目源码 | 文件源码
def buildArgsParser():
    DESCRIPTION = "Generate samples from a Conv Deep NADE model."
    p = argparse.ArgumentParser(description=DESCRIPTION, formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    p.add_argument('experiment', type=str, help='folder where to find a trained ConvDeepNADE model')
    p.add_argument('count', type=int, help='number of samples to generate.')
    p.add_argument('--out', type=str, help='name of the samples file')

    # General parameters (optional)
    p.add_argument('--seed', type=int, help='seed used to generate random numbers. Default: 1234', default=1234)
    p.add_argument('--view', action='store_true', help="show samples.")

    p.add_argument('-v', '--verbose', action='store_true', help='produce verbose output')
    p.add_argument('-f', '--force',  action='store_true', help='permit overwriting')

    return p
项目:CAAPR    作者:Stargrazer82301    | 项目源码 | 文件源码
def plotPopScore(population, fitness=False):
   """ Plot the population score distribution

   Example:
      >>> Interaction.plotPopScore(population)

   :param population: population object (:class:`GPopulation.GPopulation`)
   :param fitness: if True, the fitness score will be used, otherwise, the raw.
   :rtype: None

   """
   score_list = getPopScores(population, fitness)
   pylab.plot(score_list, 'o')
   pylab.title("Plot of population score distribution")
   pylab.xlabel('Individual')
   pylab.ylabel('Score')
   pylab.grid(True)
   pylab.show()

# -----------------------------------------------------------------
项目:CAAPR    作者:Stargrazer82301    | 项目源码 | 文件源码
def plotHistPopScore(population, fitness=False):
   """ Population score distribution histogram

   Example:
      >>> Interaction.plotHistPopScore(population)

   :param population: population object (:class:`GPopulation.GPopulation`)
   :param fitness: if True, the fitness score will be used, otherwise, the raw.
   :rtype: None

   """
   score_list = getPopScores(population, fitness)
   n, bins, patches = pylab.hist(score_list, 50, facecolor='green', alpha=0.75, normed=1)
   pylab.plot(bins, pylab.normpdf(bins, numpy.mean(score_list), numpy.std(score_list)), 'r--')
   pylab.xlabel('Score')
   pylab.ylabel('Frequency')
   pylab.grid(True)
   pylab.title("Plot of population score distribution")
   pylab.show()

# -----------------------------------------------------------------
项目:CAAPR    作者:Stargrazer82301    | 项目源码 | 文件源码
def plotPopScore(population, fitness=False):
   """ Plot the population score distribution

   Example:
      >>> Interaction.plotPopScore(population)

   :param population: population object (:class:`GPopulation.GPopulation`)
   :param fitness: if True, the fitness score will be used, otherwise, the raw.
   :rtype: None

   """
   score_list = getPopScores(population, fitness)
   pylab.plot(score_list, 'o')
   pylab.title("Plot of population score distribution")
   pylab.xlabel('Individual')
   pylab.ylabel('Score')
   pylab.grid(True)
   pylab.show()

# -----------------------------------------------------------------
项目:CAAPR    作者:Stargrazer82301    | 项目源码 | 文件源码
def plotHistPopScore(population, fitness=False):
   """ Population score distribution histogram

   Example:
      >>> Interaction.plotHistPopScore(population)

   :param population: population object (:class:`GPopulation.GPopulation`)
   :param fitness: if True, the fitness score will be used, otherwise, the raw.
   :rtype: None

   """
   score_list = getPopScores(population, fitness)
   n, bins, patches = pylab.hist(score_list, 50, facecolor='green', alpha=0.75, normed=1)
   pylab.plot(bins, pylab.normpdf(bins, numpy.mean(score_list), numpy.std(score_list)), 'r--')
   pylab.xlabel('Score')
   pylab.ylabel('Frequency')
   pylab.grid(True)
   pylab.title("Plot of population score distribution")
   pylab.show()

# -----------------------------------------------------------------
项目:f1_2017    作者:aflaisler    | 项目源码 | 文件源码
def fastLapModel(xList, labels, names, multiple=0, full_set=0):
    X = numpy.array(xList)
    y = numpy.array(labels)
    featureNames = []
    featureNames = numpy.array(names)
    # take fixed holdout set 30% of data rows
    xTrain, xTest, yTrain, yTest = train_test_split(
        X, y, test_size=0.30, random_state=531)
    # for final model (no CV)
    if full_set:
        xTrain = X
        yTrain = y
    check_set(xTrain, xTest, yTrain, yTest)
    print "Fitting the model to the data set..."
    # train random forest at a range of ensemble sizes in order to see how the
    # mse changes
    mseOos = []
    m = 10 ** multiple
    nTreeList = range(500 * m, 1000 * m, 100 * m)
    # iTrees = 10000
    for iTrees in nTreeList:
        depth = None
        maxFeat = int(np.sqrt(np.shape(xTrain)[1])) + 1  # try tweaking
        RFmd = ensemble.RandomForestRegressor(n_estimators=iTrees, max_depth=depth, max_features=maxFeat,
                                              oob_score=False, random_state=531, n_jobs=-1)
        # RFmd.n_features = 5
        RFmd.fit(xTrain, yTrain)

        # Accumulate mse on test set
        prediction = RFmd.predict(xTest)
        mseOos.append(mean_squared_error(yTest, prediction))
    # plot training and test errors vs number of trees in ensemble
    plot.plot(nTreeList, mseOos)
    plot.xlabel('Number of Trees in Ensemble')
    plot.ylabel('Mean Squared Error')
    #plot.ylim([0.0, 1.1*max(mseOob)])
    plot.show()
    print("MSE")
    print(mseOos[-1])
    return xTrain, xTest, yTrain, yTest, RFmd
项目:f1_2017    作者:aflaisler    | 项目源码 | 文件源码
def plot_importance(names, model, savefig=True):
    featureNames = numpy.array(names)
    featureImportance = model.feature_importances_
    featureImportance = featureImportance / featureImportance.max()
    sorted_idx = numpy.argsort(featureImportance)
    barPos = numpy.arange(sorted_idx.shape[0]) + .5
    plot.barh(barPos, featureImportance[sorted_idx], align='center')
    plot.yticks(barPos, featureNames[sorted_idx])
    plot.xlabel('Variable Importance')
    plot.subplots_adjust(left=0.2, right=0.9, top=0.9, bottom=0.1)
    if savefig:
        dt_ = datetime.datetime.now().strftime('%d%b%y_%H%M')
        plt.savefig("../graphs/featureImportance_" + dt_ + ".png")
    plot.show()


# Plot prediction save the graph with a timestamp
项目:f1_2017    作者:aflaisler    | 项目源码 | 文件源码
def plot_pred(y_predicted, y, savefig=True):
    # y_predicted.reset_index(drop=1, inplace=1)
    index = np.argsort(y)
    y = y[index]
    # y.shape
    yhat = y_predicted[index]
    yy = pd.DataFrame([y, yhat])
    if yy.shape[1] > yy.shape[0]:
        yy = yy.T
    yy.reset_index(drop=0, inplace=1)
    plt.scatter(yy.index, yy[1], s=.4)
    plt.plot(yy.index, yy[0], ls='-', color='red', linewidth=.5)
    if savefig:
        dt_ = datetime.datetime.now().strftime('%d%b%y_%H%M')
        plt.savefig("../graphs/" + dt_ + ".png")
    plt.show()


# Check the data before regression (no Na, size, etc)
项目:imgProcessor    作者:radjkarl    | 项目源码 | 文件源码
def backgroundPeakValue(img, bins=500):
    f = FitHistogramPeaks(img, bins=bins, bins2=300)

    bgp = getBackgroundPeak(f.fitParams)
    ind = int(bgp[1])
    if ind < 0:
        ind = 0
#     y = f.yvals[ind:]
#     i = np.argmax(np.diff(y) > 0)
#     bgmaxpos = ind  # + i
#     print(f.xvals[bgmaxpos], bgmaxpos)
#     import pylab as plt
#     plt.plot(f.xvals, f.yvals)
#     plt.show()

    return f.xvals[ind]
项目:imgProcessor    作者:radjkarl    | 项目源码 | 文件源码
def interpolate2dDiffusion(arr1, arr2, steps=10, diffusivity=0.2):

    psf = np.zeros((5, 5))
    numbaGaussian2d(psf, 1, 1)
#     plt.imshow(psf)
#     plt.show()
    last = arr1

    out = []
    for s in range(steps):
        next = np.zeros_like(arr1)
        diff = diffusivity * (last - arr2)
#         plt.imshow(diff)
#         plt.show()
        weightedConvolution(last, next, diff, psf)

        out.append(next)
        last = next
    return out
项目:imgProcessor    作者:radjkarl    | 项目源码 | 文件源码
def _visualize(grid, device, img, gen):
    # for debugging:
    # show intermediate steps of iteration
    # in [vignettingDiscreteSteps]
    import pylab as plt
    fig, ax = plt.subplots(1, 3)
    ax[0].set_title('device')
    ax[0].imshow(device, interpolation='none')
    ax[1].set_title('average')
    ax[1].imshow(grid, interpolation='none')
    ax[2].set_title('grid')
    im = ax[2].imshow(img, interpolation='none')
    for x, y in gen:
        ax[2].plot(x, y)
    fig.colorbar(im)
    plt.show()
项目:smp_base    作者:x75    | 项目源码 | 文件源码
def generate_inverted_sinewave_dataset(N = 1000, f = 1.0, p = 0.0, a1 = 1.0, a2 = 0.3):
    """models_actinf.generate_inverted_sinewave_dataset

    Generate the inverted sine dataset used in Bishop's (Bishop96)
    mixture density paper

    Returns:
    - matrices X, Y
    """
    X = np.linspace(0,1,N)
    # FIXME: include phase p
    Y = a1 * X + a2 * np.sin(f * (2 * 3.1415926) * X) + np.random.uniform(-0.1, 0.1, N)
    X,Y = Y[:,np.newaxis],X[:,np.newaxis]

    # pl.subplot(211)
    # pl.plot(Y, X, "ko", alpha=0.25)
    # pl.subplot(212)
    # pl.plot(X, Y, "ko", alpha=0.25)
    # pl.show()

    return X,Y
项目:ngas    作者:ICRAR    | 项目源码 | 文件源码
def plot_success_functions():
    data_dir = "/Users/Chen/data/ngas_logs"
    lru_yd = np.load("{0}/{1}".format(data_dir, 'yd_lru_ingest_correct.npy'))
    lfu_yd = np.load("{0}/{1}".format(data_dir, 'yd_lfu_ingest_correct.npy'))
    liat_yd = np.load("{0}/{1}".format(data_dir, 'yd_liat_ingest_correct.npy'))
    lrud_yd = np.load("{0}/{1}".format(data_dir, 'yd_lrud_ingest_correct.npy'))
    lnr_yd = np.load("{0}/{1}".format(data_dir, 'yd_lnr_ingest_correct.npy'))
    law_yd = np.load("{0}/{1}".format(data_dir, 'yd_law_ingest_correct.npy'))
    #liat_yd_imiat = np.load("{0}/{1}".format(data_dir, 'yd_liat_ingest_max_iat.npy'))
    ax1 = plot_success_function(lru_yd, label='Least Recently Used', show=False)
    #plot_success_function(lru_yd, label='LRU - default on disk', line='--', show=False, init_on_tape=False, ax=ax1)
    plot_success_function(lfu_yd, label='Least Frequently Used', line='--', lcolor='skyblue', show=False, ax=ax1)
    #plot_success_function(lfu_yd, label='LFU - default on disk', lcolor='r', line='--', init_on_tape=False, show=False, ax=ax1)
    plot_success_function(liat_yd, label='Longest Inter-Arrival Time', line=':', lcolor='darkorchid', show=False, ax=ax1)
    plot_success_function(law_yd, label='Largest Age Weight (DMF)', line='-', lcolor='k', show=False, ax=ax1)
    #plot_success_function(liat_yd, label='LIAT - default on disk', lcolor='g', line='--', init_on_tape=False, ax=ax1)
    #plot_success_function(liat_yd_imiat, label='LIAT - ingest max iat', lcolor='g', line='-.', ax=ax1)
    plot_success_function(lnr_yd, label='Longest Next Access (Optimal)', line='--', lcolor='deeppink', show=False, ax=ax1, lw=3.0)
    plot_ws_success_function(lru_yd, ax=ax1, lw=3.0)
    plot_success_function(lrud_yd, label='Longest Reuse Distance', line='-.', lcolor='lime', show=True, ax=ax1, lw=4.0)
项目:TPs    作者:DataMiningP7    | 项目源码 | 文件源码
def ex2():
    x = np.linspace(-10, 10)

    # "--" = dashed line
    plt.plot(x, np.sin(x), "--", label="sinus")
    plt.plot(x, np.cos(x), label="cosinus")

    # Show the legend using the labels above
    plt.legend()

    # The trick here is we have to make another plot on top of the two others.
    pi2 = np.pi/2

    # Find B such that (-B * pi/2) >= -10 > ((-B-1) * pi/2), i.e. the
    # first multiple of pi/2 higher than -10.
    b = pi2*int(-10.0/pi2)

    # x2 is all multiples of pi/2 between -10 and 10.
    x2 = np.arange(b, 10, pi2)

    # "b." = blue dots
    plt.plot(x2, np.sin(x2), "b.")
    plt.show()
项目:dotfiles    作者:zchee    | 项目源码 | 文件源码
def plot(self):
        """
        Plot startup data.
        """
        import pylab

        print("Plotting result...", end="")
        avg_data = self.average_data()
        avg_data = self.__sort_data(avg_data, False)
        if len(self.raw_data) > 1:
            err = self.stdev_data()
            sorted_err = [err[k] for k in list(zip(*avg_data))[0]]
        else:
            sorted_err = None
        pylab.barh(range(len(avg_data)), list(zip(*avg_data))[1],
                   xerr=sorted_err, align='center', alpha=0.4)
        pylab.yticks(range(len(avg_data)), list(zip(*avg_data))[0])
        pylab.xlabel("Average startup time (ms)")
        pylab.ylabel("Plugins")
        pylab.show()
        print(" done.")
项目:Captcha-recognition-TF    作者:dukn    | 项目源码 | 文件源码
def view_(_pred,_lable):

    fname = ['Captcha/lv3/%i.jpg' %i for i in range(20)]
    img = []
    for fn in fname:
        img.append(Image.open(open(fn)))
        #img.append(misc.imread(fn).astype(np.float))
    for i in range(len(img)):
        pylab.subplot(4,5,i+1); pylab.axis('off')

        pylab.imshow(img[i])
        #pylab.imshow( np.dot(np.array(img[i])[...,:3],[0.299,0.587,0.114]) , cmap=plt.get_cmap("gray"))
        #pylab.text(40,60,_pred[i],color = 'b')
        if ( _pred[i] == _lable[i] ):
            pylab.text(40,65,_pred[i],color = 'b',size = 15)
        else:
            pylab.text(40,65,_pred[i],color = 'r',size = 15)

        pylab.text(40,92,_lable[i],color = 'g',size = 15)

    pylab.show()
项目:computational_physics_N2014301020117    作者:yukangnineteen    | 项目源码 | 文件源码
def show(self):
#        pl.semilogy(self.theta, self.omega)
#                , label = '$L =%.1f m, $'%self.l + '$dt = %.2f s, $'%self.dt + '$\\theta_0 = %.2f radians, $'%self.theta[0] + '$q = %i, $'%self.q + '$F_D = %.2f, $'%self.F_D + '$\\Omega_D = %.1f$'%self.Omega_D)
        pl.plot(self.theta_phase ,self.omega_phase, '.', label = '$t \\approx 2\\pi n / \\Omega_D$')
        pl.xlabel('$\\theta$ (radians)')
        pl.ylabel('$\\omega$ (radians/s)')
        pl.legend()
#        pl.text(-1.4, 0.3, '$\\omega$ versus $\\theta$ $F_D = 1.2$', fontsize = 'x-large')
        pl.title('Chaotic Regime')
#        pl.show()
#        pl.semilogy(self.time_array, self.delta)
#        pl.legend(loc = 'upper center', fontsize = 'small')
#        pl.xlabel('$time (s)$')
#        pl.ylabel('$\\Delta\\theta (radians)$')
#        pl.xlim(0, self.T)
#        pl.ylim(float(input('ylim-: ')),float(input('ylim+: ')))
#        pl.ylim(1E-11, 0.01)
#        pl.text(4, -0.15, 'nonlinear pendulum - Euler-Cromer method')
#        pl.text(10, 1E-3, '$\\Delta\\theta versus time F_D = 0.5$')
#        pl.title('Simple Harmonic Motion')
        pl.title('Chaotic Regime')
项目:computational_physics_N2014301020117    作者:yukangnineteen    | 项目源码 | 文件源码
def show_log(self):
#        pl.subplot(121)
        pl.semilogy(self.time_array, self.delta, 'c')
        pl.xlabel('$time (s)$')
        pl.ylabel('$\\Delta\\theta$ (radians)')
        pl.xlim(0, self.T)
#        pl.ylim(1E-11, 0.01)
        pl.text(42, 1E-7, '$\\Delta\\theta$ versus time $F_D = 1.2$', fontsize = 'x-large')
        pl.title('Chaotic Regime')
        pl.show()

#    def show_log_sub122(self):
#        pl.subplot(122)
#        pl.semilogy(self.time_array, self.delta, 'g')
#        pl.xlabel('$time (s)$')
#        pl.ylabel('$\\Delta\\theta$ (radians)')
#        pl.xlim(0, self.T)
#        pl.ylim(1E-6, 100)
#        pl.text(20, 1E-5, '$\\Delta\\theta$ versus time $F_D = 1.2$', fontsize = 'x-large')
#        pl.title('Chaotic Regime')
#        pl.show()
项目:computational_physics_N2014301020117    作者:yukangnineteen    | 项目源码 | 文件源码
def multi_show(self):
        for i in range(2):
            a = simple_harmonic_motion(time_step = float(input('time step: ')), time_duration = float(input('time duration: ')), initial_theta = float(input('initial theta: ')), length = float(input('length: ')), strength_of_damping = float(input('stength of damping: ')), amplitude = float(input('amplitude of driving force: ')), anguluar_frequency = float(input('angular frequency of driving force: ')))
            a.calculate()
            a.show()
        pl.show()




#class please_input():
#        string_input = input('xlocation ,ylocation: ')
#        numbers = [float(n) for n in string_input.split()]        
#        x = numbers[0]
#        y = numbers[1]



#b = simple_harmonic_motion()
#b.calculate_delta()
#b.show()
项目:computational_physics_N2014301020117    作者:yukangnineteen    | 项目源码 | 文件源码
def show(self):
#        pl.semilogy(self.theta, self.omega)
#                , label = '$L =%.1f m, $'%self.l + '$dt = %.2f s, $'%self.dt + '$\\theta_0 = %.2f radians, $'%self.theta[0] + '$q = %i, $'%self.q + '$F_D = %.2f, $'%self.F_D + '$\\Omega_D = %.1f$'%self.Omega_D)
        pl.plot(self.time_array,self.delta)

#        pl.show()
#        pl.semilogy(self.time_array, self.delta)
#        pl.legend(loc = 'upper center', fontsize = 'small')
#        pl.xlabel('$time (s)$')
#        pl.ylabel('$\\Delta\\theta (radians)$')
#        pl.xlim(0, self.T)
#        pl.ylim(float(input('ylim-: ')),float(input('ylim+: ')))
#        pl.ylim(1E-11, 0.01)
#        pl.text(4, -0.15, 'nonlinear pendulum - Euler-Cromer method')
#        pl.text(10, 1E-3, '$\\Delta\\theta versus time F_D = 0.5$')
#        pl.title('Simple Harmonic Motion')
#        pl.title('Chaotic Regime')
项目:computational_physics_N2014301020117    作者:yukangnineteen    | 项目源码 | 文件源码
def show_log(self):
#        pl.subplot(121)
        pl.semilogy(self.time_array, self.delta, 'c')
        pl.xlabel('$time (s)$')
        pl.ylabel('$\\Delta\\theta$ (radians)')
        pl.xlim(0, self.T)
#        pl.ylim(1E-11, 0.01)
        pl.text(42, 1E-7, '$\\Delta\\theta$ versus time $F_D = 1.2$', fontsize = 'x-large')
        pl.title('Chaotic Regime')
        pl.show()

#    def show_log_sub122(self):
#        pl.subplot(122)
#        pl.semilogy(self.time_array, self.delta, 'g')
#        pl.xlabel('$time (s)$')
#        pl.ylabel('$\\Delta\\theta$ (radians)')
#        pl.xlim(0, self.T)
#        pl.ylim(1E-6, 100)
#        pl.text(20, 1E-5, '$\\Delta\\theta$ versus time $F_D = 1.2$', fontsize = 'x-large')
#        pl.title('Chaotic Regime')
#        pl.show()
项目:computational_physics_N2014301020117    作者:yukangnineteen    | 项目源码 | 文件源码
def show_complex(self):
        font = {'family': 'serif',
                'color':  'k',
                'weight': 'normal',
                'size': 16,
        }
        pl.title('The Trajectory of Tageted Baseball\n with air flow in adiabatic model', fontdict = font)
        pl.plot(self.x, self.y, label = '$v_0 = %.5f m/s$'%self.v0 + ', ' + '$\\theta = %.4f \degree$'%self.theta)
        pl.xlabel('x $m$')
        pl.ylabel('y $m$')
        pl.xlim(0, 300)
        pl.ylim(-100, 20)
        pl.grid()
        pl.legend(loc = 'upper right', shadow = True, fontsize = 'small')
        pl.text(15, -90, 'scan to approach the minimum velocity and corresponding launching angle', fontdict = font)
        pl.show()
项目:computational_physics_N2014301020117    作者:yukangnineteen    | 项目源码 | 文件源码
def show_simple(self):
        font = {'family': 'serif',
                'color':  'k',
                'weight': 'normal',
                'size': 16,
        }
        pl.title('The Trajectory of Tageted Baseball\n with air flow in adiabatic model', fontdict = font)
        pl.plot(self.x, self.y, label ='$\\alpha = %.0f \degree$'%self.alpha)
        pl.xlabel('x $m$')
        pl.ylabel('y $m$')
        pl.xlim(0, 400)
        pl.ylim(-100, 200)
        pl.grid()
        pl.legend(loc = 'upper right', shadow = True, fontsize = 'medium')
        pl.text(5, -80, 'trojectories varing with angles of wind', fontdict = font)
        pl.show()
项目:computational_physics_N2014301020117    作者:yukangnineteen    | 项目源码 | 文件源码
def double_scan(self):
        v_0 = 81.09589
        while 0 <= v_0:
            theta_0 = 7.1610
            while 7.1610 <= theta_0 < 7.1620:
                t = targeted_baseball(v_0, theta_0, 0.01, 10, 135)
                t.calculate()
                t.show()
                if a < 220:
                    theta_0 = theta_0 + 0.0001
                else:
                    print(a, '\n', v_0,'\n', theta_0)
                    break
            v_0 = v_0 + 0.00001
            if a >= 220:
                break
项目:computational_physics_N2014301020117    作者:yukangnineteen    | 项目源码 | 文件源码
def show_results(self):
        font = {'family': 'serif',
                'color':  'k',
                'weight': 'normal',
                'size': 14,
        }
        pl.plot(self.x, self.y, 'c', label='firing angle = 45°')
        pl.title('The Trajectory of a Cannon Shell', fontdict = font)
        pl.xlabel('x (k$m$)')
        pl.ylabel('y ($km$)')
        pl.xlim(0, 60)
        pl.ylim(0, 20)
        pl.grid(True)
        pl.legend(loc='upper right', shadow=True, fontsize='large')
        pl.text(41, 16, 'Only with air drag', fontdict = font)
        pl.show()
项目:computational_physics_N2014301020117    作者:yukangnineteen    | 项目源码 | 文件源码
def show_results(self):
        font = {'family': 'serif',
                'color':  'k',
                'weight': 'normal',
                'size': 12,
        }
        pl.plot(self.x, self.y, 'c', label='firing angle = 45°')
        pl.title('The Trajectory of a Cannon Shell', fontdict = font)
        pl.xlabel('x (k$m$)')
        pl.ylabel('y ($km$)')
        pl.xlim(0, 60)
        pl.ylim(0, 20)
        pl.grid(True)
        pl.legend(loc='upper right', shadow=True, fontsize='large')
        pl.text(34, 16, '       With both air drag and \n reduced air density-isothermal', fontdict = font)
        pl.show()
项目:computational_physics_N2014301020117    作者:yukangnineteen    | 项目源码 | 文件源码
def show_results(self):
        font = {'family': 'serif',
                'color':  'k',
                'weight': 'normal',
                'size': 12,
        }
        pl.plot(self.x, self.y, 'c', label='firing angle = 45°')
        pl.title('The Trajectory of a Cannon Shell', fontdict = font)
        pl.xlabel('x (k$m$)')
        pl.ylabel('y ($km$)')
        pl.xlim(0, 60)
        pl.ylim(0, 20)
        pl.grid(True)
        pl.legend(loc='upper right', shadow=True, fontsize='large')
        pl.text(34.5, 16, '       With both air drag and \n reduced air density-adiabatic', fontdict = font)
        pl.show()
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def DrawDvs(pl, closes, curve, sign, dvs, pandl, sh, title, leag=None, lad=None ):
    pl.figure
    pl.subplot(311)
    pl.title("id:%s Sharpe ratio: %.2f"%(str(title),sh))
    pl.plot(closes)
    DrawLine(pl, sign, closes)
    pl.subplot(312)
    pl.grid()
    if dvs != None:
        pl.plot(dvs)
    if isinstance(curve, np.ndarray):
        DrawZZ(pl, curve, 'r')
    if leag != None:
        pl.plot(leag, 'r')
    if lad != None:
        pl.plot(lad, 'b')
    #pl.plot(stock.GuiYiHua(closes[:i])[60:])
    pl.subplot(313)
    pl.plot(sign)
    pl.plot(pandl)
    pl.show()
    pl.close()
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def DrawDvsAndZZ(pl, dvs, zz, closes=None):
    """dvs?zz??????; dvs : ????closes, """
    dvs = np.array(dvs)
    pl.figure
    if closes == None:
        pl.plot(dvs)
        pl.plot(zz[:,0], zz[:,1], 'r')
    else:
        pl.subplot(211)
        pl.plot(closes)
        pl.grid()
        pl.subplot(212)
        pl.grid()
        pl.plot(dvs)
        pl.plot(zz[:,0], zz[:,1], 'r')
    pl.show()
    pl.close()
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def DrawHist(pl, shs):  
    """??????, shs: ??? array"""
    shs = np.array(shs, dtype=float)
    #print "mean: %.2f"%shs.mean()
    shs = shs[np.isnan(shs) == False]
    if len(shs)>0:
        pl.figure
        pl.hist(shs)
        def ShowHitCount(shs):
            #????
            go_count = len(shs) - len(shs[np.isnan(shs)])
            #???
            if len(shs) != 0:
                v = float(go_count)/ float(len(shs))
                #print("trade rato:%.2f%%"%(v*100))
            #?????
            if go_count>0:
                v = float(len(shs[shs>0]))/float(go_count)
                #print("win rato: %.2f%%"%(v*100))
        pl.show()
        #ShowHitCount(shs)
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def _test_AsynDrawKline(self):
        code = '300033'
        start_day = '2017-8-25'
        #df = stock.getHisdatDataFrameFromRedis(code, start_day)
        df = stock.getFiveHisdatDf(code, start_day=start_day)
        import account
        account = account.LocalAcount(account.BackTesting())
        #????????
        indexs = agl.GenRandomArray(len(df), 3)
        trade_bSell = [0,1,0]
        df_trades = df[df.index.map(lambda x: x in df.index[indexs])]
        df_trades = df_trades.copy()
        df_trades[AsynDrawKline.enum.trade_bSell] = trade_bSell

        plt.ion()
        for i in range(10):
            AsynDrawKline.drawKline(df[i*10:], df_trades)

        plt.ioff()
        #plt.show()  #???????? ????????
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def _test_boll(self):
        code = '300113'
        df_five_hisdat = getFiveHisdatDf(code,'2017-5-1')
        #print(closes)
        #upper, middle, lower = BOLL(df_five_hisdat['c'])
        #print(upper[-1], lower[-1])
        upper, middle, lower = TDX_BOLL(df_five_hisdat['c'])
        print upper[-10:]
        print middle[-10:]
        print lower[-10:]
        #df_five_hisdat['upper'] = upper
        #df_five_hisdat['lower'] = lower
        #df_five_hisdat['mid'] = middle
        #df = df_five_hisdat[['upper', 'c', 'mid', 'lower']]
        #df.plot()
        #pl.show()
        upper, middle, lower, boll_w = TDX_BOLL2(df_five_hisdat['c'])
        print boll_w
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def plot(self):
        #??????????????????
        pl.figure
        #?????
        a = []
        for h in self.weituo_historys:
            a.append(h.price)
        a = GuiYiHua(a)
        pl.plot(a, 'b')
        #???
        a = np.array(self.total_moneys)
        a = GuiYiHua(a)
        pl.plot(a, 'r')
        pl.legend(['price list', 'money list'])
        pl.show()
        pl.close()

    #???????????????, ??????????
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def Unittest_Kline():
    """"""
    kline = Guider("600100", "")
    print(kline.getData(0).date, kline.getLastData().date)

    #kline.myprint()
    obv = kline.OBV()

    pl.figure
    pl.subplot(2,1,1)
    pl.plot(kline.getCloses())
    pl.subplot(2,1,2)
    ma,m2,m3 = kline.MACD()
    pl.plot(ma)
    pl.plot(m2,'r')
    left = np.arange(0, len(m3))
    pl.bar(left,m3)
    #pl.plot(obv, 'y')
    pl.show()


#Unittest_Kstp()    
#
#???????????
#----------------------------------------------------------------------
项目:chainer-adversarial-autoencoder    作者:fukuta0614    | 项目源码 | 文件源码
def visualize_reconstruction(xp, model, x, visualization_dir, epoch, gpu=False):
    x_variable = chainer.Variable(xp.asarray(x))
    _x = model.decode(model.encode(x_variable), test=True)
    _x.to_cpu()
    _x = _x.data

    fig = pylab.gcf()
    fig.set_size_inches(8.0, 8.0)
    pylab.clf()
    pylab.gray()
    for m in range(50):
        i = m / 10
        j = m % 10
        pylab.subplot(10, 10, 20 * i + j + 1, xticks=[], yticks=[])
        pylab.imshow(x[m].reshape((28, 28)), interpolation="none")
        pylab.subplot(10, 10, 20 * i + j + 10 + 1, xticks=[], yticks=[])
        pylab.imshow(_x[m].reshape((28, 28)), interpolation="none")
        # pylab.imshow(np.clip((_x_batch.data[m] + 1.0) / 2.0, 0.0, 1.0).reshape(
        # (config.img_channel, config.img_width, config.img_width)), interpolation="none")
        pylab.axis("off")
    pylab.savefig("{}/reconstruction_{}.png".format(visualization_dir, epoch))
    # pylab.show()
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def view_waveforms_clusters(data, halo, threshold, templates, amps_lim, n_curves=200, save=False):

    nb_templates = templates.shape[1]
    n_panels     = numpy.ceil(numpy.sqrt(nb_templates))
    mask         = numpy.where(halo > -1)[0]
    clust_idx    = numpy.unique(halo[mask])
    fig          = pylab.figure()    
    square       = True
    center       = len(data[0] - 1)//2
    for count, i in enumerate(xrange(nb_templates)):
        if square:
            pylab.subplot(n_panels, n_panels, count + 1)
            if (numpy.mod(count, n_panels) != 0):
                pylab.setp(pylab.gca(), yticks=[])
            if (count < n_panels*(n_panels - 1)):
                pylab.setp(pylab.gca(), xticks=[])

        subcurves = numpy.where(halo == clust_idx[count])[0]
        for k in numpy.random.permutation(subcurves)[:n_curves]:
            pylab.plot(data[k], '0.5')

        pylab.plot(templates[:, count], 'r')        
        pylab.plot(amps_lim[count][0]*templates[:, count], 'b', alpha=0.5)
        pylab.plot(amps_lim[count][1]*templates[:, count], 'b', alpha=0.5)

        xmin, xmax = pylab.xlim()
        pylab.plot([xmin, xmax], [-threshold, -threshold], 'k--')
        pylab.plot([xmin, xmax], [threshold, threshold], 'k--')
        #pylab.ylim(-1.5*threshold, 1.5*threshold)
        ymin, ymax = pylab.ylim()
        pylab.plot([center, center], [ymin, ymax], 'k--')
        pylab.title('Cluster %d' %i)

    if nb_templates > 0:
        pylab.tight_layout()
    if save:
        pylab.savefig(os.path.join(save[0], 'waveforms_%s' %save[1]))
        pylab.close()
    else:
        pylab.show()
    del fig
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def view_artefact(data, save=False):

    fig          = pylab.figure()    
    pylab.plot(data.T)
    if save:
        pylab.savefig(os.path.join(save[0], 'artefact_%s' %save[1]))
        pylab.close()
    else:
        pylab.show()
    del fig
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def view_trigger_snippets(trigger_snippets, chans, save=None):
    # Create output directory if necessary.
    if os.path.exists(save):
        for f in os.listdir(save):
            p = os.path.join(save, f)
            os.remove(p)
        os.removedirs(save)
    os.makedirs(save)
    # Plot figures.
    fig = pylab.figure()
    for (c, chan) in enumerate(chans):
        ax = fig.add_subplot(1, 1, 1)
        for n in xrange(0, trigger_snippets.shape[2]):
            y = trigger_snippets[:, c, n]
            x = numpy.arange(- (y.size - 1) / 2, (y.size - 1) / 2 + 1)
            b = 0.5 + 0.5 * numpy.random.rand()
            ax.plot(x, y, color=(0.0, 0.0, b), linestyle='solid')
        y = numpy.mean(trigger_snippets[:, c, :], axis=1)
        x = numpy.arange(- (y.size - 1) / 2, (y.size - 1) / 2 + 1)
        ax.plot(x, y, color=(1.0, 0.0, 0.0), linestyle='solid')
        ax.grid(True)
        ax.set_xlim([numpy.amin(x), numpy.amax(x)])
        ax.set_title("Channel %d" %chan)
        ax.set_xlabel("time")
        ax.set_ylabel("amplitude")
        if save is not None:
            # Save plot.
            filename = "channel-%d.png" %chan
            path = os.path.join(save, filename)
            pylab.savefig(path)
        fig.clf()
    if save is None:
        pylab.show()
    else:
        pylab.close(fig)
    return
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def view_mahalanobis_distribution(data_1, data_2, save=None):
    '''Plot Mahalanobis distribution Before and After'''
    fig = pylab.figure()
    ax = fig.add_subplot(1,2,1)
    if len(data_1) == 3:
        d_gt, d_ngt, d_noi = data_1
    elif len(data_1) == 2:
        d_gt, d_ngt = data_1
    if len(data_1) == 3:
        ax.hist(d_noi, bins=50, color='k', alpha=0.5, label="Noise")
    ax.hist(d_ngt, bins=50, color='b', alpha=0.5, label="Non GT")
    ax.hist(d_gt, bins=75, color='r', alpha=0.5, label="GT")
    ax.grid(True)
    ax.set_title("Before")
    ax.set_ylabel("")
    ax.set_xlabel('# Samples')
    ax.set_xlabel('Distances')

    if len(data_2) == 3:
        d_gt, d_ngt, d_noi = data_2
    elif len(data_2) == 2:
        d_gt, d_ngt = data_2
    ax = fig.add_subplot(1,2,2)
    if len(data_2) == 3:
        ax.hist(d_noi, bins=50, color='k', alpha=0.5, label="Noise")
    ax.hist(d_ngt, bins=50, color='b', alpha=0.5, label="Non GT")
    ax.hist(d_gt, bins=75, color='r', alpha=0.5, label="GT")
    ax.grid(True)
    ax.set_title("After")
    ax.set_ylabel("")
    ax.set_xlabel('Distances')


    ax.legend()
    if save is None:
        pylab.show()
    else:
        pylab.savefig(save)
        pylab.close(fig)
    return