Python pylab 模块,subplot() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用pylab.subplot()

项目:NetPower_TestBed    作者:Vignesh2208    | 项目源码 | 文件源码
def freq_from_HPS(sig, fs):
    """
    Estimate frequency using harmonic product spectrum (HPS)

    """
    windowed = sig * blackmanharris(len(sig))

    from pylab import subplot, plot, log, copy, show

    # harmonic product spectrum:
    c = abs(rfft(windowed))
    maxharms = 3
    #subplot(maxharms, 1, 1)
    #plot(log(c))
    for x in range(2, maxharms):
        a = copy(c[::x])  # Should average or maximum instead of decimating
        # max(c[::x],c[1::x],c[2::x],...)
        c = c[:len(a)]
        i = argmax(abs(c))
        true_i = parabolic(abs(c), i)[0]
        print 'Pass %d: %f Hz' % (x, fs * true_i / len(windowed))
        c *= a
        #subplot(maxharms, 1, x)
        #plot(log(c))
    #show()
项目:jack    作者:uclmr    | 项目源码 | 文件源码
def plot(self, ylim=None):
        import matplotlib.patches as mpatches
        import matplotlib.pyplot as plt
        from pylab import subplot
        number_of_subplots=len(self.scores.keys())
        colors = ['blue', 'green', 'orange']
        patches = []
        for plot_idx, metric in enumerate(self.scores):
            for i, set_name in enumerate(self.scores[metric].keys()):
                data = self.scores[metric][set_name][0]
                time = self.scores[metric][set_name][1]
                patches.append(mpatches.Patch(color=colors[i], label='{0} {1}'.format(set_name, metric)))
                ax1 = subplot(number_of_subplots,1,plot_idx+1)
                ax1.plot(time,data, label='{0}'.format(metric), color=colors[i])
                if ylim != None:
                    plt.ylim(ymin=ylim[0])
                    plt.ylim(ymax=ylim[1])
                plt.xlabel('iter')
                plt.ylabel('{0} {1}'.format(set_name, metric))
        ax1.legend(handles=patches)

        plt.show()
项目:keras    作者:GeekLiB    | 项目源码 | 文件源码
def on_epoch_end(self, epoch, logs={}):
        self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % epoch))
        self.show_edit_distance(256)
        word_batch = next(self.text_img_gen)[0]
        res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words])

        for i in range(self.num_display_words):
            pylab.subplot(self.num_display_words, 1, i + 1)
            if K.image_dim_ordering() == 'th':
                the_input = word_batch['the_input'][i, 0, :, :]
            else:
                the_input = word_batch['the_input'][i, :, :, 0]
            pylab.imshow(the_input, cmap='Greys_r')
            pylab.xlabel('Truth = \'%s\' Decoded = \'%s\'' % (word_batch['source_str'][i], res[i]))
        fig = pylab.gcf()
        fig.set_size_inches(10, 12)
        pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % epoch))
        pylab.close()

# Input Parameters
项目:facade-segmentation    作者:jfemiani    | 项目源码 | 文件源码
def plot(self, overlay_alpha=0.5):
        import pylab as pl
        rows = int(sqrt(self.layers()))
        cols = int(ceil(self.layers()/rows))

        for i in range(rows*cols):
            pl.subplot(rows, cols, i+1)
            pl.axis('off')
            if i >= self.layers():
                continue
            pl.title('{}({})'.format(self.labels[i], i))
            pl.imshow(self.image)
            pl.imshow(colorize(self.features[i].argmax(0),
                               colors=np.array([[0,     0, 255],
                                                [0,   255, 255],
                                                [255, 255, 0],
                                                [255, 0,   0]])),
                      alpha=overlay_alpha)
项目:PorousMediaLab    作者:biogeochemistry    | 项目源码 | 文件源码
def PlotProps(pars):
    import numpy as np
    import pylab as pl
    import vanGenuchten as vg
    psi = np.linspace(-10, 2, 200)
    pl.figure
    pl.subplot(3, 1, 1)
    pl.plot(psi, vg.thetaFun(psi, pars))
    pl.ylabel(r'$\theta(\psi) [-]$')
    pl.subplot(3, 1, 2)
    pl.plot(psi, vg.CFun(psi, pars))
    pl.ylabel(r'$C(\psi) [1/m]$')
    pl.subplot(3, 1, 3)
    pl.plot(psi, vg.KFun(psi, pars))
    pl.xlabel(r'$\psi [m]$')
    pl.ylabel(r'$K(\psi) [m/d]$')
    # pl.show()
项目:finite_volume_seismic_model    作者:cjvogl    | 项目源码 | 文件源码
def plot_okada(self, axes=None, dim=1, displacement='vertical', kwargs={}):
        if (self.dtopo is None):
        raise ValueError("Need to call create_dtopography before plot_okada")

        if (displacement is 'vertical'):
            if axes is None:
                from pylab import figure, subplot
                figure()
                axes = subplot(111)
            if (dim is 1):
                axes.plot(self.dtopo.x*LAT2METER,self.dtopo.dZ[0,0,:],**kwargs)
            elif (dim is 2):
                X,Y = numpy.meshgrid(self.dtopo.x,self.dtopo.y)
                axes.pcolormesh(X*LAT2METER,Y*LAT2METER,self.dtopo.dZ[0,:,:],**kwargs)
        elif (displacement is 'horizontal'):
            if axes is None:
                from pylab import figure, subplot
                figure()
                axes = subplot(111)
            if (dim is 1):
                axes.plot(self.dtopo.x*LAT2METER,self.dtopo.dY[0,0,:],**kwargs)
项目:finite_volume_seismic_model    作者:cjvogl    | 项目源码 | 文件源码
def plot_okada(self, axes=None, dim=1, displacement='vertical', kwargs={}):
        if (self.dtopo is None):
        raise ValueError("Need to call create_dtopography before plot_okada")

        if (displacement is 'vertical'):
            if axes is None:
                from pylab import figure, subplot
                figure()
                axes = subplot(111)
            if (dim is 1):
                axes.plot(self.dtopo.x*LAT2METER,self.dtopo.dZ[0,0,:],**kwargs)
            elif (dim is 2):
                X,Y = numpy.meshgrid(self.dtopo.x,self.dtopo.y)
                axes.pcolormesh(X*LAT2METER,Y*LAT2METER,self.dtopo.dZ[0,:,:],**kwargs)
        elif (displacement is 'horizontal'):
            if axes is None:
                from pylab import figure, subplot
                figure()
                axes = subplot(111)
            if (dim is 1):
                axes.plot(self.dtopo.x*LAT2METER,self.dtopo.dY[0,0,:],**kwargs)
项目:rastercube    作者:terrai    | 项目源码 | 文件源码
def plot_glcf_labelmap(labels, ax=None):
    import pylab as pl
    if ax is None:
        ax = pl.subplot(111)

    vimg = glcf_to_rgb(labels)
    vimg[labels.mask] = (0, 0, 0)
    ax.imshow(vimg, interpolation='nearest')

    lgd_patches = []
    for glcf_type in sorted(np.unique(labels)):
        if glcf_type is ma.masked:
            continue
        lgd_patches.append(
            mpatches.Patch(
                color=np.array(CMAP[glcf_type]) / 255.,
                label=CLASSES_NAMES[glcf_type]
            )
        )
    ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.05),
              handles=lgd_patches)
项目:smp_base    作者:x75    | 项目源码 | 文件源码
def generate_inverted_sinewave_dataset(N = 1000, f = 1.0, p = 0.0, a1 = 1.0, a2 = 0.3):
    """models_actinf.generate_inverted_sinewave_dataset

    Generate the inverted sine dataset used in Bishop's (Bishop96)
    mixture density paper

    Returns:
    - matrices X, Y
    """
    X = np.linspace(0,1,N)
    # FIXME: include phase p
    Y = a1 * X + a2 * np.sin(f * (2 * 3.1415926) * X) + np.random.uniform(-0.1, 0.1, N)
    X,Y = Y[:,np.newaxis],X[:,np.newaxis]

    # pl.subplot(211)
    # pl.plot(Y, X, "ko", alpha=0.25)
    # pl.subplot(212)
    # pl.plot(X, Y, "ko", alpha=0.25)
    # pl.show()

    return X,Y
项目:keras-customized    作者:ambrite    | 项目源码 | 文件源码
def on_epoch_end(self, epoch, logs={}):
        self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch)))
        self.show_edit_distance(256)
        word_batch = next(self.text_img_gen)[0]
        res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words])
        if word_batch['the_input'][0].shape[0] < 256:
            cols = 2
        else:
            cols = 1
        for i in range(self.num_display_words):
            pylab.subplot(self.num_display_words // cols, cols, i + 1)
            if K.image_dim_ordering() == 'th':
                the_input = word_batch['the_input'][i, 0, :, :]
            else:
                the_input = word_batch['the_input'][i, :, :, 0]
            pylab.imshow(the_input.T, cmap='Greys_r')
            pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i]))
        fig = pylab.gcf()
        fig.set_size_inches(10, 13)
        pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch)))
        pylab.close()
项目:keras-mxnet-benchmarks    作者:sandeep-krishnamurthy    | 项目源码 | 文件源码
def on_epoch_end(self, epoch, logs={}):
        self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch)))
        self.show_edit_distance(256)
        word_batch = next(self.text_img_gen)[0]
        res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words])
        if word_batch['the_input'][0].shape[0] < 256:
            cols = 2
        else:
            cols = 1
        for i in range(self.num_display_words):
            pylab.subplot(self.num_display_words // cols, cols, i + 1)
            if K.image_dim_ordering() == 'th':
                the_input = word_batch['the_input'][i, 0, :, :]
            else:
                the_input = word_batch['the_input'][i, :, :, 0]
            pylab.imshow(the_input.T, cmap='Greys_r')
            pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i]))
        fig = pylab.gcf()
        fig.set_size_inches(10, 13)
        pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch)))
        pylab.close()
项目:adversarial-autoencoder    作者:musyoku    | 项目源码 | 文件源码
def tile_images(image_batch, image_width=28, image_height=28, image_channel=1, dir=None, filename="images"):
    if dir is None:
        raise Exception()
    try:
        os.mkdir(dir)
    except:
        pass
    fig = pylab.gcf()
    fig.set_size_inches(16.0, 16.0)
    pylab.clf()
    pylab.gray()
    for m in range(100):
        pylab.subplot(10, 10, m + 1)
        pylab.imshow(image_batch[m].reshape((image_width, image_height)), interpolation="none")
        pylab.axis("off")
    pylab.savefig("{}/{}.png".format(dir, filename))
项目:Captcha-recognition-TF    作者:dukn    | 项目源码 | 文件源码
def view_(_pred,_lable):

    fname = ['Captcha/lv3/%i.jpg' %i for i in range(20)]
    img = []
    for fn in fname:
        img.append(Image.open(open(fn)))
        #img.append(misc.imread(fn).astype(np.float))
    for i in range(len(img)):
        pylab.subplot(4,5,i+1); pylab.axis('off')

        pylab.imshow(img[i])
        #pylab.imshow( np.dot(np.array(img[i])[...,:3],[0.299,0.587,0.114]) , cmap=plt.get_cmap("gray"))
        #pylab.text(40,60,_pred[i],color = 'b')
        if ( _pred[i] == _lable[i] ):
            pylab.text(40,65,_pred[i],color = 'b',size = 15)
        else:
            pylab.text(40,65,_pred[i],color = 'r',size = 15)

        pylab.text(40,92,_lable[i],color = 'g',size = 15)

    pylab.show()
项目:computational_physics_N2014301020117    作者:yukangnineteen    | 项目源码 | 文件源码
def show_log(self):
#        pl.subplot(121)
        pl.semilogy(self.time_array, self.delta, 'c')
        pl.xlabel('$time (s)$')
        pl.ylabel('$\\Delta\\theta$ (radians)')
        pl.xlim(0, self.T)
#        pl.ylim(1E-11, 0.01)
        pl.text(42, 1E-7, '$\\Delta\\theta$ versus time $F_D = 1.2$', fontsize = 'x-large')
        pl.title('Chaotic Regime')
        pl.show()

#    def show_log_sub122(self):
#        pl.subplot(122)
#        pl.semilogy(self.time_array, self.delta, 'g')
#        pl.xlabel('$time (s)$')
#        pl.ylabel('$\\Delta\\theta$ (radians)')
#        pl.xlim(0, self.T)
#        pl.ylim(1E-6, 100)
#        pl.text(20, 1E-5, '$\\Delta\\theta$ versus time $F_D = 1.2$', fontsize = 'x-large')
#        pl.title('Chaotic Regime')
#        pl.show()
项目:computational_physics_N2014301020117    作者:yukangnineteen    | 项目源码 | 文件源码
def show_log(self):
#        pl.subplot(121)
        pl.semilogy(self.time_array, self.delta, 'c')
        pl.xlabel('$time (s)$')
        pl.ylabel('$\\Delta\\theta$ (radians)')
        pl.xlim(0, self.T)
#        pl.ylim(1E-11, 0.01)
        pl.text(42, 1E-7, '$\\Delta\\theta$ versus time $F_D = 1.2$', fontsize = 'x-large')
        pl.title('Chaotic Regime')
        pl.show()

#    def show_log_sub122(self):
#        pl.subplot(122)
#        pl.semilogy(self.time_array, self.delta, 'g')
#        pl.xlabel('$time (s)$')
#        pl.ylabel('$\\Delta\\theta$ (radians)')
#        pl.xlim(0, self.T)
#        pl.ylim(1E-6, 100)
#        pl.text(20, 1E-5, '$\\Delta\\theta$ versus time $F_D = 1.2$', fontsize = 'x-large')
#        pl.title('Chaotic Regime')
#        pl.show()
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def DrawDvs(pl, closes, curve, sign, dvs, pandl, sh, title, leag=None, lad=None ):
    pl.figure
    pl.subplot(311)
    pl.title("id:%s Sharpe ratio: %.2f"%(str(title),sh))
    pl.plot(closes)
    DrawLine(pl, sign, closes)
    pl.subplot(312)
    pl.grid()
    if dvs != None:
        pl.plot(dvs)
    if isinstance(curve, np.ndarray):
        DrawZZ(pl, curve, 'r')
    if leag != None:
        pl.plot(leag, 'r')
    if lad != None:
        pl.plot(lad, 'b')
    #pl.plot(stock.GuiYiHua(closes[:i])[60:])
    pl.subplot(313)
    pl.plot(sign)
    pl.plot(pandl)
    pl.show()
    pl.close()
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def DrawDvsAndZZ(pl, dvs, zz, closes=None):
    """dvs?zz??????; dvs : ????closes, """
    dvs = np.array(dvs)
    pl.figure
    if closes == None:
        pl.plot(dvs)
        pl.plot(zz[:,0], zz[:,1], 'r')
    else:
        pl.subplot(211)
        pl.plot(closes)
        pl.grid()
        pl.subplot(212)
        pl.grid()
        pl.plot(dvs)
        pl.plot(zz[:,0], zz[:,1], 'r')
    pl.show()
    pl.close()
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def Unittest_Kline():
    """"""
    kline = Guider("600100", "")
    print(kline.getData(0).date, kline.getLastData().date)

    #kline.myprint()
    obv = kline.OBV()

    pl.figure
    pl.subplot(2,1,1)
    pl.plot(kline.getCloses())
    pl.subplot(2,1,2)
    ma,m2,m3 = kline.MACD()
    pl.plot(ma)
    pl.plot(m2,'r')
    left = np.arange(0, len(m3))
    pl.bar(left,m3)
    #pl.plot(obv, 'y')
    pl.show()


#Unittest_Kstp()    
#
#???????????
#----------------------------------------------------------------------
项目:tap    作者:mfouesneau    | 项目源码 | 文件源码
def setMargins(left=None, bottom=None, right=None, top=None, wspace=None, hspace=None):
        """
        Tune the subplot layout via the meanings (and suggested defaults) are::

            left  = 0.125  # the left side of the subplots of the figure
            right = 0.9    # the right side of the subplots of the figure
            bottom = 0.1   # the bottom of the subplots of the figure
            top = 0.9      # the top of the subplots of the figure
            wspace = 0.2   # the amount of width reserved for blank space between subplots
            hspace = 0.2   # the amount of height reserved for white space between subplots

        The actual defaults are controlled by the rc file

        """
        plt.subplots_adjust(left, bottom, right, top, wspace, hspace)
        plt.draw_if_interactive()
项目:chainer-adversarial-autoencoder    作者:fukuta0614    | 项目源码 | 文件源码
def visualize_reconstruction(xp, model, x, visualization_dir, epoch, gpu=False):
    x_variable = chainer.Variable(xp.asarray(x))
    _x = model.decode(model.encode(x_variable), test=True)
    _x.to_cpu()
    _x = _x.data

    fig = pylab.gcf()
    fig.set_size_inches(8.0, 8.0)
    pylab.clf()
    pylab.gray()
    for m in range(50):
        i = m / 10
        j = m % 10
        pylab.subplot(10, 10, 20 * i + j + 1, xticks=[], yticks=[])
        pylab.imshow(x[m].reshape((28, 28)), interpolation="none")
        pylab.subplot(10, 10, 20 * i + j + 10 + 1, xticks=[], yticks=[])
        pylab.imshow(_x[m].reshape((28, 28)), interpolation="none")
        # pylab.imshow(np.clip((_x_batch.data[m] + 1.0) / 2.0, 0.0, 1.0).reshape(
        # (config.img_channel, config.img_width, config.img_width)), interpolation="none")
        pylab.axis("off")
    pylab.savefig("{}/reconstruction_{}.png".format(visualization_dir, epoch))
    # pylab.show()
项目:keras    作者:NVIDIA    | 项目源码 | 文件源码
def on_epoch_end(self, epoch, logs={}):
        self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch)))
        self.show_edit_distance(256)
        word_batch = next(self.text_img_gen)[0]
        res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words])
        if word_batch['the_input'][0].shape[0] < 256:
            cols = 2
        else:
            cols = 1
        for i in range(self.num_display_words):
            pylab.subplot(self.num_display_words // cols, cols, i + 1)
            if K.image_dim_ordering() == 'th':
                the_input = word_batch['the_input'][i, 0, :, :]
            else:
                the_input = word_batch['the_input'][i, :, :, 0]
            pylab.imshow(the_input.T, cmap='Greys_r')
            pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i]))
        fig = pylab.gcf()
        fig.set_size_inches(10, 13)
        pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch)))
        pylab.close()
项目:fang    作者:rgrosse    | 项目源码 | 文件源码
def plot_eigenspectrum(G, s, nvis, nhid):
    with misc.gnumpy_conversion_check('allow'):
        dim = G.shape[0]
        d, Q = scipy.linalg.eigh(G)
        d = d[::-1]
        Q = Q[:, ::-1]

        pts = np.unique(np.floor(np.logspace(0., np.log10(dim-1), 500)).astype(int)) - 1

        cf = [fisher.correlation_fraction(Q[:, i], s, nvis, nhid) for i in pts]

        pylab.figure()
        pylab.subplot(2, 1, 1)
        pylab.loglog(range(1, dim+1), d, 'b-', lw=2.)
        pylab.xticks([])
        pylab.yticks(fontsize='large')

        pylab.subplot(2, 1, 2)
        pylab.semilogx(pts+1, cf, 'r-', lw=2.)
        pylab.xticks(fontsize='x-large')
        pylab.yticks(fontsize='large')
项目:PyPeVoc    作者:goiosunsw    | 项目源码 | 文件源码
def two_plot_time_freq_mag(self, minlen=10):
        part = [pp for pp in self.partial if len(pp.f) > minlen]
        pl.figure()
        ax1 = pl.subplot(211)
        pl.hold(True)
        ax2 = pl.subplot(212, sharex=ax1)
        pl.hold(True)
        for pp in part:
            ax1.plot(pp.start_idx + np.arange(len(pp.f)), np.array(pp.f))
            ax2.plot(pp.start_idx + np.arange(len(pp.f)),
                     20*np.log10(np.array(pp.mag)))
        ax1.hold(False)
        # ax1.xlabel('Time (s)')
        ax1.set_ylabel('Frequency (Hz)')
        ax2.set_xlabel('Time (s)')
        ax2.set_ylabel('Frequency (Hz)')
        # pl.show()
        return pl.gca()
项目:unrolled-gan    作者:musyoku    | 项目源码 | 文件源码
def tile_binary_images(x, dir=None, filename="x", row=10, col=10):
    if dir is None:
        raise Exception()
    try:
        os.mkdir(dir)
    except:
        pass
    fig = pylab.gcf()
    fig.set_size_inches(col * 2, row * 2)
    pylab.clf()
    pylab.gray()
    for m in range(row * col):
        pylab.subplot(row, col, m + 1)
        pylab.imshow(np.clip(x[m], 0, 1), interpolation="none")
        pylab.axis("off")
    pylab.savefig("{}/{}.png".format(dir, filename))
项目:actinf    作者:x75    | 项目源码 | 文件源码
def plotstuff():
    X__ = np.load("tm_X.npy")
    S_pred = np.load("tm_S_pred.npy")
    E_pred = np.load("tm_E_pred.npy")
    M = np.load("tm_M.npy")

    pl.ioff()
    pl.suptitle("mode: %s (X: FM input, state pred: FM output)" % ("bluib"))
    pl.subplot(511)
    pl.title("X[goals]")
    pl.plot(X__[10:,0:4], "-x")
    pl.subplot(512)
    pl.title("X[prediction error]")
    pl.plot(X__[10:,4:], "-x")
    pl.subplot(513)
    pl.title("state pred")
    pl.plot(S_pred)
    pl.subplot(514)
    pl.title("error state - goal")
    pl.plot(E_pred)
    pl.subplot(515)
    pl.title("state")
    pl.plot(M)
    pl.show()
项目:LSGAN    作者:musyoku    | 项目源码 | 文件源码
def tile_binary_images(x, dir=None, filename="x", row=10, col=10):
    if dir is None:
        raise Exception()
    try:
        os.mkdir(dir)
    except:
        pass
    fig = pylab.gcf()
    fig.set_size_inches(col * 2, row * 2)
    pylab.clf()
    pylab.gray()
    for m in range(row * col):
        pylab.subplot(row, col, m + 1)
        pylab.imshow(np.clip(x[m], 0, 1), interpolation="none")
        pylab.axis("off")
    pylab.savefig("{}/{}.png".format(dir, filename))
项目:adgm    作者:musyoku    | 项目源码 | 文件源码
def tile_binary_images(x, dir=None, filename="x"):
    if dir is None:
        raise Exception()
    try:
        os.mkdir(dir)
    except:
        pass
    fig = pylab.gcf()
    fig.set_size_inches(16.0, 16.0)
    pylab.clf()
    pylab.gray()
    for m in range(100):
        pylab.subplot(10, 10, m + 1)
        pylab.imshow(np.clip(x[m], 0, 1), interpolation="none")
        pylab.axis("off")
    pylab.savefig("{}/{}.png".format(dir, filename))
项目:bokeh_roc_slider    作者:brianray    | 项目源码 | 文件源码
def plot_multiple_rocs_separate(rocList,title='', labels = None, equal_aspect = True):
    """ Plot multiples ROC curves as separate at the same painting area. """
    pylab.clf()
    pylab.title(title)
    for ix, r in enumerate(rocList):
        ax = pylab.subplot(4,4,ix+1)
        pylab.ylim((0,1))
        pylab.xlim((0,1))
        ax.set_yticklabels([])
        ax.set_xticklabels([])
        if equal_aspect:
            cax = pylab.gca()
            cax.set_aspect('equal')

        if not labels:
            labels = ['' for x in rocList]

        pylab.text(0.2,0.1,labels[ix],fontsize=8)
        pylab.plot([x[0] for x in r.derived_points],[y[1] for y in r.derived_points], 'r-',linewidth=2)

    pylab.show()
项目:PyFusionGUI    作者:SyntaxVoid    | 项目源码 | 文件源码
def plot_signals(input_data, filename=None,downsamplefactor=1,n_columns=1):
    import pylab as pl
    n_rows = input_data.signal.n_channels()
    n_rows = int(n_rows/n_columns)
    print str(n_rows) + ' ' + str(n_columns)
    for row in range(n_rows):
        for col in range(n_columns):
            print (row)*n_columns+col+1
            pl.subplot(n_rows, n_columns, row*n_columns+col+1)
            if downsamplefactor==1:
                pl.plot(input_data.timebase, input_data.signal.get_channel(row*n_columns+col))
                pl.axis([-0.01,0.1,-5, 5])
            else:
                plotdata=input_data.signal.get_channel(row*n_columns+col)
                timedata=input_data.timebase
                pl.plot(timedata[0:len(timedata):downsamplefactor], plotdata[0:len(timedata):downsamplefactor])
                pl.axis([-0.01,0.1,-5,5])
    if filename != None:
        pl.savefig(filename)
    else:
        pl.show()
项目:variational-autoencoder    作者:musyoku    | 项目源码 | 文件源码
def visualize_x(reconstructed_x_batch, image_width=28, image_height=28, image_channel=1, dir=None):
    if dir is None:
        raise Exception()
    try:
        os.mkdir(dir)
    except:
        pass
    fig = pylab.gcf()
    fig.set_size_inches(16.0, 16.0)
    pylab.clf()
    if image_channel == 1:
        pylab.gray()
    for m in range(100):
        pylab.subplot(10, 10, m + 1)
        if image_channel == 1:
            pylab.imshow(reconstructed_x_batch[m].reshape((image_width, image_height)), interpolation="none")
        elif image_channel == 3:
            pylab.imshow(reconstructed_x_batch[m].reshape((image_channel, image_width, image_height)), interpolation="none")
        pylab.axis("off")
    pylab.savefig("%s/reconstructed_x.png" % dir)
项目:variational-autoencoder    作者:musyoku    | 项目源码 | 文件源码
def visualize_labeled_z(z_batch, label_batch, dir=None):
    fig = pylab.gcf()
    fig.set_size_inches(20.0, 16.0)
    pylab.clf()
    colors = ["#2103c8", "#0e960e", "#e40402","#05aaa8","#ac02ab","#aba808","#151515","#94a169", "#bec9cd", "#6a6551"]
    for n in xrange(z_batch.shape[0]):
        result = pylab.scatter(z_batch[n, 0], z_batch[n, 1], c=colors[label_batch[n]], s=40, marker="o", edgecolors='none')

    classes = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
    recs = []
    for i in range(0, len(colors)):
        recs.append(mpatches.Rectangle((0, 0), 1, 1, fc=colors[i]))

    ax = pylab.subplot(111)
    box = ax.get_position()
    ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
    ax.legend(recs, classes, loc="center left", bbox_to_anchor=(1.1, 0.5))
    pylab.xticks(pylab.arange(-4, 5))
    pylab.yticks(pylab.arange(-4, 5))
    pylab.xlabel("z1")
    pylab.ylabel("z2")
    pylab.savefig("%s/labeled_z.png" % dir)
项目:keras-101    作者:burness    | 项目源码 | 文件源码
def on_epoch_end(self, epoch, logs={}):
        self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch)))
        self.show_edit_distance(256)
        word_batch = next(self.text_img_gen)[0]
        res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words])
        if word_batch['the_input'][0].shape[0] < 256:
            cols = 2
        else:
            cols = 1
        for i in range(self.num_display_words):
            pylab.subplot(self.num_display_words // cols, cols, i + 1)
            if K.image_dim_ordering() == 'th':
                the_input = word_batch['the_input'][i, 0, :, :]
            else:
                the_input = word_batch['the_input'][i, :, :, 0]
            pylab.imshow(the_input.T, cmap='Greys_r')
            pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i]))
        fig = pylab.gcf()
        fig.set_size_inches(10, 13)
        pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch)))
        pylab.close()
项目:livespin    作者:biocompibens    | 项目源码 | 文件源码
def removeIllumination2(self, size, title = ''):
        out = ndimage.filters.gaussian_filter(self.image, size)
        pylab.figure()
        pylab.subplot(2,2,1)
        pylab.axis('off')
        pylab.imshow(self.image)
        pylab.subplot(2,2,2)
        pylab.axis('off')
        pylab.imshow(out)
        pylab.subplot(2,2,3)
        pylab.axis('off')
        pylab.imshow(self.image - out)
        pylab.subplot(2,2,4)
        pylab.axis('off')
        pylab.imshow(self.smooth - out)
        if title != '':
            pylab.savefig(title)
            pylab.close()
        else:
            pylab.show()
        self.smooth -= out
        return self.image - out
项目:livespin    作者:biocompibens    | 项目源码 | 文件源码
def plot(self, outpath=''):
        pylab.figure(figsize = (17,10))
        diff = self.f2-self.f3
        pylab.subplot(2,1,1)
        pylab.plot(range(self.lengthSeq), self.f2, 'r-', label = "f2")
        pylab.plot(range(self.lengthSeq), self.f3, 'g-', label = "f3")
        pylab.xlim([0., self.lengthSeq])
        pylab.tick_params(axis='both', which='major', labelsize=25)
        pylab.subplot(2,1,2)

        diff2 = diff/self.f3
        diff2 /= np.max(diff2)
        pylab.plot(range(self.lengthSeq), diff2, 'b-', label = "Rescaled (by max) difference / f3")
        pylab.xlabel("Temps (en images)", fontsize = 25)
        pylab.tick_params(axis='both', which='major', labelsize=25)
        pylab.xlim([0., self.lengthSeq])
        #pylab.legend(loc= 2, prop = {'size':15})
        pylab.savefig(outpath)
        pylab.close()
项目:livespin    作者:biocompibens    | 项目源码 | 文件源码
def plotAgainstGFP_hist2d(self):
        fig1 = pylab.figure(figsize = (20, 15))
        print len(self.GFP)
        for i in xrange(min(len(data.cat), 4)):
            print len(self.GFP[self.categories == i])
            vect = []
            pylab.subplot(2,2,i+1)
            pop = self.GFP[self.categories == i]
            print "cat", i, "n pop", len(self.GFP[(self.categories == i) & (self.GFP > -np.log(12.5))])
            H, xedges, yedges = np.histogram2d(self.angles[self.categories == i], self.GFP[self.categories == i], bins = 10)
            hist = pylab.hist2d(self.GFP[self.categories == i], self.angles[self.categories == i], bins = 10, cmap = pylab.cm.Reds, normed = True)
            pylab.clim(0.,0.035)
            pylab.colorbar()
            pylab.title(data.cat[i])
            pylab.xlabel('GFP score')
            pylab.ylabel('Angle (degree)')
            pylab.xlim([-4.2, -1])
        pylab.show()
项目:livespin    作者:biocompibens    | 项目源码 | 文件源码
def bootstrap_extradata(self, nBoot, extradataA, nbins = 20):
        pops =[]
        meanpop = [[] for i in data.cat]
        pylab.figure(figsize = (14,14))
        for i in xrange(min(4, len(extradataA))):
            #pylab.subplot(2,2,i+1)
            if  i ==0:
                pylab.title("Bootstrap on means", fontsize = 20.)
            pop = extradataA[i]# & (self.GFP > 2000)]#
            for index in xrange(nBoot):
                newpop = np.random.choice(pop, size=len(pop), replace=True)

                #meanpop[i].append(np.mean(newpop))
            pops.append(newpop)
            pylab.legend()
        #pylab.title(cat[i])
            pylab.xlabel("Angle(degree)", fontsize = 15)
            pylab.xlim([0., 90.])
        for i in xrange(len(extradataA)):
            for j in xrange(i+1, len(extradataA)):
                statT, pvalue = scipy.stats.ttest_ind(pops[i], pops[j], equal_var=False)
                print "cat{0} & cat{1} get {2} ({3})".format(i,j, pvalue,statT)
        pylab.savefig("/users/biocomp/frose/frose/Graphics/FINALRESULTS-diff-f3/mean_nBootstrap{0}_bins{1}_GFPsup{2}_FLO_{3}.png".format(nBoot, nbins, 'all', randint(0,999)))
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def view_waveforms_clusters(data, halo, threshold, templates, amps_lim, n_curves=200, save=False):

    nb_templates = templates.shape[1]
    n_panels     = numpy.ceil(numpy.sqrt(nb_templates))
    mask         = numpy.where(halo > -1)[0]
    clust_idx    = numpy.unique(halo[mask])
    fig          = pylab.figure()    
    square       = True
    center       = len(data[0] - 1)//2
    for count, i in enumerate(xrange(nb_templates)):
        if square:
            pylab.subplot(n_panels, n_panels, count + 1)
            if (numpy.mod(count, n_panels) != 0):
                pylab.setp(pylab.gca(), yticks=[])
            if (count < n_panels*(n_panels - 1)):
                pylab.setp(pylab.gca(), xticks=[])

        subcurves = numpy.where(halo == clust_idx[count])[0]
        for k in numpy.random.permutation(subcurves)[:n_curves]:
            pylab.plot(data[k], '0.5')

        pylab.plot(templates[:, count], 'r')        
        pylab.plot(amps_lim[count][0]*templates[:, count], 'b', alpha=0.5)
        pylab.plot(amps_lim[count][1]*templates[:, count], 'b', alpha=0.5)

        xmin, xmax = pylab.xlim()
        pylab.plot([xmin, xmax], [-threshold, -threshold], 'k--')
        pylab.plot([xmin, xmax], [threshold, threshold], 'k--')
        #pylab.ylim(-1.5*threshold, 1.5*threshold)
        ymin, ymax = pylab.ylim()
        pylab.plot([center, center], [ymin, ymax], 'k--')
        pylab.title('Cluster %d' %i)

    if nb_templates > 0:
        pylab.tight_layout()
    if save:
        pylab.savefig(os.path.join(save[0], 'waveforms_%s' %save[1]))
        pylab.close()
    else:
        pylab.show()
    del fig
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def view_performance(file_name, triggers, lims=(150,150)):

    params          = CircusParser(file_name)
    N_e             = params.getint('data', 'N_e')
    N_total         = params.getint('data', 'N_total')
    sampling_rate   = params.getint('data', 'sampling_rate')
    do_temporal_whitening = params.getboolean('whitening', 'temporal')
    do_spatial_whitening  = params.getboolean('whitening', 'spatial')
    spike_thresh     = params.getfloat('detection', 'spike_thresh')
    file_out_suff    = params.get('data', 'file_out_suff')
    N_t              = params.getint('detection', 'N_t')
    nodes, edges     = get_nodes_and_edges(params)
    chunk_size       = N_t

    if do_spatial_whitening:
        spatial_whitening  = load_data(params, 'spatial_whitening')
    if do_temporal_whitening:
        temporal_whitening = load_data(params, 'temporal_whitening')

    thresholds       = load_data(params, 'thresholds')    

    try:
        result    = load_data(params, 'results')
    except Exception:
        result    = {'spiketimes' : {}, 'amplitudes' : {}}

    curve     = numpy.zeros((len(triggers), len(result['spiketimes'].keys()), lims[1]+lims[0]), dtype=numpy.int32)
    count     = 0

    for count, t_spike in enumerate(triggers):
        for key in result['spiketimes'].keys():
            elec  = int(key.split('_')[1])
            idx   = numpy.where((result['spiketimes'][key] > t_spike - lims[0]) & (result['spiketimes'][key] <  t_spike + lims[0]))
            curve[count, elec, t_spike - result['spiketimes'][key][idx]] += 1
    pylab.subplot(111)
    pylab.imshow(numpy.mean(curve, 0), aspect='auto') 
    return curve
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def view_raw_templates(file_name, n_temp=2, square=True):

    N_e, N_t, N_tm = templates.shape
    if not numpy.iterable(n_temp):
        if square:
            idx = numpy.random.permutation(numpy.arange(N_tm//2))[:n_temp**2]
        else:
            idx = numpy.random.permutation(numpy.arange(N_tm//2))[:n_temp]
    else:
        idx = n_temp

    import matplotlib.colors as colors
    my_cmap   = pylab.get_cmap('winter')
    cNorm     = colors.Normalize(vmin=0, vmax=N_e)
    scalarMap = pylab.cm.ScalarMappable(norm=cNorm, cmap=my_cmap)

    pylab.figure()
    for count, i in enumerate(idx):
        if square:
            pylab.subplot(n_temp, n_temp, count + 1)
            if (numpy.mod(count, n_temp) != 0):
                pylab.setp(pylab.gca(), yticks=[])
            if (count < n_temp*(n_temp - 1)):
                pylab.setp(pylab.gca(), xticks=[])
        else:
            pylab.subplot(len(idx), 1, count + 1)
            if count != (len(idx) - 1):
                pylab.setp(pylab.gca(), xticks=[])
        for j in xrange(N_e):
            colorVal = scalarMap.to_rgba(j)
            pylab.plot(templates[j, :, i], color=colorVal)

        pylab.title('Template %d' %i)
    pylab.tight_layout()
    pylab.show()
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def get_performance(file_name, name):

    a, b            = os.path.splitext(os.path.basename(file_name))
    file_name, ext  = os.path.splitext(file_name)
    file_out        = os.path.join(os.path.abspath(file_name), a)
    data            = {}
    result          = h5py.File(file_out + '.basis.hdf5')
    data['spatial']  = result.get('spatial')[:]
    data['temporal'] = numpy.zeros(61) #result.get('temporal')[:]

    pylab.figure()
    pylab.subplot(121)
    pylab.imshow(data['spatial'], interpolation='nearest')
    pylab.title('Spatial')
    pylab.xlabel('# Electrode')
    pylab.ylabel('# Electrode')
    pylab.colorbar()
    pylab.subplot(122)
    pylab.title('Temporal')
    pylab.plot(data['temporal'])
    pylab.xlabel('Time [ms]')
    x, y = pylab.xticks()
    pylab.xticks(x, (x-x[-1]//2)//10)
    pylab.tight_layout()
    plot_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '.'))
    plot_path = os.path.join(plot_path, 'plots')
    plot_path = os.path.join(plot_path, 'whitening')
    if not os.path.exists(plot_path):
        os.makedirs(plot_path)
    output = os.path.join(plot_path, '%s.pdf' %name)
    pylab.savefig(output)

    return data
项目:seqhawkes    作者:mlukasik    | 项目源码 | 文件源码
def align_subplots(
    N,
    M,
    xlim=None,
    ylim=None,
    ):
    """make all of the subplots have the same limits, turn off unnecessary ticks"""

    # find sensible xlim,ylim

    if xlim is None:
        xlim = [np.inf, -np.inf]
        for i in range(N * M):
            pb.subplot(N, M, i + 1)
            xlim[0] = min(xlim[0], pb.xlim()[0])
            xlim[1] = max(xlim[1], pb.xlim()[1])
    if ylim is None:
        ylim = [np.inf, -np.inf]
        for i in range(N * M):
            pb.subplot(N, M, i + 1)
            ylim[0] = min(ylim[0], pb.ylim()[0])
            ylim[1] = max(ylim[1], pb.ylim()[1])

    for i in range(N * M):
        pb.subplot(N, M, i + 1)
        pb.xlim(xlim)
        pb.ylim(ylim)
        if i % M:
            pb.yticks([])
        else:
            removeRightTicks()
        if i < M * (N - 1):
            pb.xticks([])
        else:
            removeUpperTicks()
项目:SegmentationService    作者:jingchaoluan    | 项目源码 | 文件源码
def plotgrid(data,d=10,shape=(30,30)):
    """Plot a list of images on a grid."""
    ion()
    gray()
    clf()
    for i in range(min(d*d,len(data))):
        subplot(d,d,i+1)
        row = data[i]
        if shape is not None: row = row.reshape(shape)
        imshow(row)
    ginput(1,timeout=0.1)
项目:SegmentationService    作者:jingchaoluan    | 项目源码 | 文件源码
def showgrid(l,cols=None,n=400,titles=None,xlabels=None,ylabels=None,**kw):
    if "cmap" not in kw: kw["cmap"] = cm.gray
    if "interpolation" not in kw: kw["interpolation"] = "nearest"
    n = minimum(n,len(l))
    if cols is None: cols = int(sqrt(n))
    rows = (n+cols-1)//cols
    for i in range(n):
        pylab.xticks([]) ;pylab.yticks([])
        pylab.subplot(rows,cols,i+1)
        pylab.imshow(l[i],**kw)
        if titles is not None: pylab.title(str(titles[i]))
        if xlabels is not None: pylab.xlabel(str(xlabels[i]))
        if ylabels is not None: pylab.ylabel(str(ylabels[i]))
项目:astromalign    作者:dstndstn    | 项目源码 | 文件源码
def resetplot():
    import matplotlib
    import pylab as plt
    kw = {}
    for p in ['bottom', 'top', 'left', 'right', 'hspace', 'wspace']:
        kw[p] = matplotlib.rcParams['figure.subplot.' + p]
    plt.subplots_adjust(**kw)
项目:astromalign    作者:dstndstn    | 项目源码 | 文件源码
def plotaffinegrid(affines, exag=1e3, affineOnly=True, R=0.025, tpre='', bboxes=None):
    import pylab as plt
    NR = 3
    NC = int(ceil(len(affines)/3.))
    #R = 0.025 # 1.5 arcmin
    #for (exag,affonly) in [(1e2, False), (1e3, True), (1e4, True)]:
    plt.clf()
    for i,aff in enumerate(affines):
        plt.subplot(NR, NC, i+1)
        dl = aff.refdec - R
        dh = aff.refdec + R
        rl = aff.refra  - R / aff.rascale
        rh = aff.refra  + R / aff.rascale
        RR,DD = np.meshgrid(np.linspace(rl, rh, 11),
                            np.linspace(dl, dh, 11))
        plotaffine(aff, RR.ravel(), DD.ravel(), exag=exag, affineOnly=affineOnly,
                   doclf=False,
                   units='dots', width=2, headwidth=2.5, headlength=3, headaxislength=3)
        if bboxes is not None:
            for bb in bboxes:
                plt.plot(*bb, linestyle='-', color='0.5')
            plt.plot(*bboxes[i], linestyle='-', color='k')
        setRadecAxes(rl,rh,dl,dh)
        plt.xlabel('')
        plt.ylabel('')
        plt.xticks([])
        plt.yticks([])
        plt.title('field %i' % (i+1))
    plt.subplots_adjust(left=0.05, right=0.95, wspace=0.1)
    if affineOnly:
        tt = tpre + 'Affine part of transformations'
    else:
        tt = tpre + 'Transformations'
    plt.suptitle(tt + ' (x %g)' % exag)
项目:facade-segmentation    作者:jfemiani    | 项目源码 | 文件源码
def plot_facade_cuts(self):

        facade_sig = self.facade_edge_scores.sum(0)
        facade_cuts = find_facade_cuts(facade_sig, dilation_amount=self.facade_merge_amount)
        mu = np.mean(facade_sig)
        sigma = np.std(facade_sig)

        w = self.rectified.shape[1]
        pad=10

        gs1 = pl.GridSpec(5, 5)
        gs1.update(wspace=0.5, hspace=0.0)  # set the spacing between axes.

        pl.subplot(gs1[:3, :])
        pl.imshow(self.rectified)
        pl.vlines(facade_cuts, *pl.ylim(), lw=2, color='black')
        pl.axis('off')
        pl.xlim(-pad, w+pad)

        pl.subplot(gs1[3:, :], sharex=pl.gca())
        pl.fill_between(np.arange(w), 0, facade_sig, lw=0, color='red')
        pl.fill_between(np.arange(w), 0, np.clip(facade_sig, 0, mu+sigma), color='blue')
        pl.plot(np.arange(w), facade_sig, color='blue')

        pl.vlines(facade_cuts, facade_sig[facade_cuts], pl.xlim()[1], lw=2, color='black')
        pl.scatter(facade_cuts, facade_sig[facade_cuts])

        pl.axis('off')

        pl.hlines(mu, 0, w, linestyle='dashed', color='black')
        pl.text(0, mu, '$\mu$ ', ha='right')

        pl.hlines(mu + sigma, 0, w, linestyle='dashed', color='gray',)
        pl.text(0, mu + sigma, '$\mu+\sigma$ ', ha='right')
        pl.xlim(-pad, w+pad)
项目:pCVR    作者:xjtushilei    | 项目源码 | 文件源码
def on_epoch_end(self, epoch, logs={}):
        self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch)))
        self.show_edit_distance(256)
        word_batch = next(self.text_img_gen)[0]
        res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words])
        if word_batch['the_input'][0].shape[0] < 256:
            cols = 2
        else:
            cols = 1
        for i in range(self.num_display_words):
            pylab.subplot(self.num_display_words // cols, cols, i + 1)
            if K.image_data_format() == 'channels_first':
                the_input = word_batch['the_input'][i, 0, :, :]
            else:
                the_input = word_batch['the_input'][i, :, :, 0]
            pylab.imshow(the_input.T, cmap='Greys_r')
            pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i]))
        fig = pylab.gcf()
        fig.set_size_inches(10, 13)
        pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch)))
        pylab.close()
项目:measure_lens_alignment    作者:oxford-pcs    | 项目源码 | 文件源码
def plot(self):
    '''
      This is a wrapper function to generate the complete sag plot.

      It requires datasets with two keys, 'data' and 'heading'. The former should 
      contain all necessary information (as a subdictionary) to call all the _draw* 
      functions.
    '''
    plot_colours = ('r', 'b', 'g', 'y')
    f, axes = plt.subplots(3, 1, figsize=(16,7))
    ax = plt.subplot(1, 4, 1)
    plt.tick_params(labelsize=10)
    plt.rcParams.update({'axes.titlesize': 'small', 'axes.labelsize': 'small', 'xtick.labelsize':'small', 'ytick.labelsize':'small'})
    for idx, d in enumerate(self.datasets):
      self._drawLinearDisplacementsToAxis(ax, d['data']['x'], d['data']['y'], 
                      d['data']['x_err'], d['data']['y_err'], 
                      d['data']['mount_angles'], d['data']['fit_xc'], 
                      d['data']['fit_yc'], d['data']['fit_r'],
                      d['heading'], 
                      color=plot_colours[idx])
    ax = plt.subplot(1, 4, 2, projection='polar')
    for idx, d in enumerate(self.datasets):
      self._drawRadialDisplacementsToAxis(ax, d['data']['xy_angles_from_12_o_clock'],
                      (d['data']['x'], d['data']['y']), 
                      d['data']['mount_angles'], label=d['heading'], 
                      color=plot_colours[idx])
    ax = plt.subplot(1, 4, 3, projection='polar')
    for idx, d in enumerate(self.datasets):
      self._drawResidualsToAxis(ax, d['data']['xy_angles_from_12_o_clock'],
                d['data']['residuals'], d['data']['mount_angles'], 
                label=d['heading'], color=plot_colours[idx])
    ax = plt.subplot(1, 4, 4, projection='polar')
    for idx, d in enumerate(self.datasets):
      self._drawAnglesFromMountNormalToAxis(ax, d['data']['xy_angles_from_12_o_clock'],
                        [angle[2] for angle in 
                         d['data']['angles_from_mount_normal']],
                                            d['data']['mount_angles'],
                                            label=d['heading'], color=plot_colours[idx])
项目:multi-contact-zmp    作者:stephane-caron    | 项目源码 | 文件源码
def plot_trajectories(self):
        pylab.clf()
        pylab.rc('text', usetex=True)
        pylab.rc('font', size=18)
        pylab.subplot(121)
        self.plot_com()
        pylab.subplot(122)
        self.plot_zmp()
项目:dynamic-walking    作者:stephane-caron    | 项目源码 | 文件源码
def test_discretization(nmpc, nb_steps):
    dT = nmpc.preview.dT
    pylab.ion()
    pylab.clf()
    ax = pylab.subplot(311)
    ax.set_color_cycle(['r', 'g', 'b'])
    pylab.plot(
        [sum(dT[:i]) for i in xrange(len(dT))],
        nmpc.preview.P, marker='o')
    pylab.plot(
        pylab.linspace(0., sum(dT), nb_steps + 1),
        [x[0:3] for x in nmpc.preview.discretize(nb_steps)],
        marker='s', linestyle='--')
    ax = pylab.subplot(312)
    ax.set_color_cycle(['r', 'g', 'b'])
    pylab.plot(
        [sum(dT[:i]) for i in xrange(len(dT))],
        nmpc.preview.V, marker='o')
    pylab.plot(
        pylab.linspace(0., sum(dT), nb_steps + 1),
        [x[3:6] for x in nmpc.preview.discretize(nb_steps)],
        marker='s', linestyle='--')
    ax = pylab.subplot(313)
    ax.set_color_cycle(['r', 'g', 'b'])
    pylab.plot(
        [sum(dT[:i]) for i in xrange(len(dT))],
        nmpc.preview.Z, marker='o')
    pylab.plot(
        pylab.linspace(0., sum(dT), nb_steps + 1),
        [x[6:9] for x in nmpc.preview.discretize(nb_steps)],
        marker='s', linestyle='--')