我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用pylab.imshow()。
def plot_rgb(image, name, label=None, label_color='w', label_size='large'): """ This will plot the r,g,b channels of an *image* of shape (N,M,3) or (N,M,4). *name* is the prefix of the file name, which will be supplemented with "_rgb.png." *label*, *label_color* and *label_size* may also be specified. """ import pylab Nvec = image.shape[0] image[np.isnan(image)] = 0.0 if image.shape[2] >= 4: image = image[:,:,:3] pylab.clf() pylab.gcf().set_dpi(100) pylab.gcf().set_size_inches((Nvec/100.0, Nvec/100.0)) pylab.gcf().subplots_adjust(left=0.0, right=1.0, bottom=0.0, top=1.0, wspace=0.0, hspace=0.0) pylab.imshow(image, interpolation='nearest') if label is not None: pylab.text(20, 20, label, color = label_color, size=label_size) pylab.savefig("%s_rgb.png" % name) pylab.clf()
def plot(self,**kwargs): """plot landscape (kwargs are passed on to imshow() Use interpolation='bilinear' or 'bicubic' for a smooth surface. Default is 'nearest', which shows exact bin boundaries. """ import pylab kwargs.setdefault('interpolation','nearest') pylab.clf() pylab.xlabel('x') pylab.ylabel('y') pylab.imshow(self.pmf_masked.T,**kwargs) pylab.colorbar() pylab.show()
def disp(iimg, label = "", gray=False): """ Display an image using pylab """ try: import pylab dimage = iimg.copy() if iimg.ndim==3: dimage[...,0] = iimg[...,2] dimage[...,2] = iimg[...,0] pylab.imshow(dimage, interpolation='none') if gray: pylab.gray() #pylab.gca().format_coord = format_coord pylab.text(1500, -30, label) pylab.axis('off') pylab.show() except ImportError: print "Module pylab not available"
def on_epoch_end(self, epoch, logs={}): self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % epoch)) self.show_edit_distance(256) word_batch = next(self.text_img_gen)[0] res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words]) for i in range(self.num_display_words): pylab.subplot(self.num_display_words, 1, i + 1) if K.image_dim_ordering() == 'th': the_input = word_batch['the_input'][i, 0, :, :] else: the_input = word_batch['the_input'][i, :, :, 0] pylab.imshow(the_input, cmap='Greys_r') pylab.xlabel('Truth = \'%s\' Decoded = \'%s\'' % (word_batch['source_str'][i], res[i])) fig = pylab.gcf() fig.set_size_inches(10, 12) pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % epoch)) pylab.close() # Input Parameters
def _extract_lines(img, edges=None, mask=None, min_line_length=20, max_line_gap=3): global __i__ __i__ += 1 if edges is None: edges = canny(rgb2grey(img)) if mask is not None: edges = edges & mask # figure() # subplot(131) # imshow(img) # subplot(132) #vimshow(edges) # subplot(133) # if mask is not None: # imshow(mask, cmap=cm.gray) # savefig('/home/shared/Projects/Facades/src/data/for-labelme/debug/foo/{:06}.jpg'.format(__i__)) lines = np.array(probabilistic_hough_line(edges, line_length=min_line_length, line_gap=max_line_gap)) return lines
def plot_rectified(self): import pylab pylab.title('rectified') pylab.imshow(self.rectified) for line in self.vlines: p0, p1 = line p0 = self.inv_transform(p0) p1 = self.inv_transform(p1) pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='green') for line in self.hlines: p0, p1 = line p0 = self.inv_transform(p0) p1 = self.inv_transform(p1) pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='red') pylab.axis('image'); pylab.grid(c='yellow', lw=1) pylab.plt.yticks(np.arange(0, self.l, 100.0)); pylab.xlim(0, self.w) pylab.ylim(self.l, 0)
def plot_original(self): import pylab pylab.title('original') pylab.imshow(self.data) for line in self.lines: p0, p1 = line pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='blue', alpha=0.3) for line in self.vlines: p0, p1 = line pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='green') for line in self.hlines: p0, p1 = line pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='red') pylab.axis('image'); pylab.grid(c='yellow', lw=1) pylab.plt.yticks(np.arange(0, self.l, 100.0)); pylab.xlim(0, self.w) pylab.ylim(self.l, 0)
def plot(self): """ Plot the layer data (for debugging) :return: The current figure """ import pylab as pl aspect = self.nrows / float(self.ncols) figure_width = 6 #inches rows = max(1, int(np.sqrt(self.nlayers))) cols = int(np.ceil(self.nlayers/rows)) # noinspection PyUnresolvedReferences pallette = {i:rgb for (i, rgb) in enumerate(pl.cm.jet(np.linspace(0, 1, 4), bytes=True))} f, a = pl.subplots(rows, cols) f.set_size_inches(6 * cols, 6 * rows) a = a.flatten() for i, label in enumerate(self.label_names): pl.sca(a[i]) pl.title(label) pl.imshow(self.color_data) pl.imshow(colorize(self.label_data[:, :, i], pallette), alpha=0.5) # axis('off') return f
def plot(self, overlay_alpha=0.5): import pylab as pl rows = int(sqrt(self.layers())) cols = int(ceil(self.layers()/rows)) for i in range(rows*cols): pl.subplot(rows, cols, i+1) pl.axis('off') if i >= self.layers(): continue pl.title('{}({})'.format(self.labels[i], i)) pl.imshow(self.image) pl.imshow(colorize(self.features[i].argmax(0), colors=np.array([[0, 0, 255], [0, 255, 255], [255, 255, 0], [255, 0, 0]])), alpha=overlay_alpha)
def _plot_background(self, bgimage): import pylab as pl # Show the portion of the image behind this facade left, right = self.facade_left, self.facade_right top, bottom = 0, self.mega_facade.rectified.shape[0] if bgimage is not None: pl.imshow(bgimage[top:bottom, left:right], extent=(left, right, bottom, top)) else: # Fit the facade in the plot y0, y1 = pl.ylim() x0, x1 = pl.xlim() x0 = min(x0, left) x1 = max(x1, right) y0 = min(y0, top) y1 = max(y1, bottom) pl.xlim(x0, x1) pl.ylim(y1, y0)
def show_mpl(self, im, enhance=True, clear_fig=True): if self._pylab is None: import pylab self._pylab = pylab if self._render_figure is None: self._render_figure = self._pylab.figure(1) if clear_fig: self._render_figure.clf() if enhance: nz = im[im > 0.0] nim = im / (nz.mean() + 6.0 * np.std(nz)) nim[nim > 1.0] = 1.0 nim[nim < 0.0] = 0.0 del nz else: nim = im ax = self._pylab.imshow(nim[:,:,:3]/nim[:,:,:3].max(), origin='upper') return ax
def plot_allsky_healpix(image, nside, fn, label = "", rotation = None, take_log = True, resolution=512, cmin=None, cmax=None): import matplotlib.figure import matplotlib.backends.backend_agg if rotation is None: rotation = np.eye(3).astype("float64") img, count = pixelize_healpix(nside, image, resolution, resolution, rotation) fig = matplotlib.figure.Figure((10, 5)) ax = fig.add_subplot(1,1,1,projection='aitoff') if take_log: func = np.log10 else: func = lambda a: a implot = ax.imshow(func(img), extent=(-np.pi,np.pi,-np.pi/2,np.pi/2), clip_on=False, aspect=0.5, vmin=cmin, vmax=cmax) cb = fig.colorbar(implot, orientation='horizontal') cb.set_label(label) ax.xaxis.set_ticks(()) ax.yaxis.set_ticks(()) canvas = matplotlib.backends.backend_agg.FigureCanvasAgg(fig) canvas.print_figure(fn) return img, count
def interpolate2dDiffusion(arr1, arr2, steps=10, diffusivity=0.2): psf = np.zeros((5, 5)) numbaGaussian2d(psf, 1, 1) # plt.imshow(psf) # plt.show() last = arr1 out = [] for s in range(steps): next = np.zeros_like(arr1) diff = diffusivity * (last - arr2) # plt.imshow(diff) # plt.show() weightedConvolution(last, next, diff, psf) out.append(next) last = next return out
def on_epoch_end(self, epoch, logs={}): self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch))) self.show_edit_distance(256) word_batch = next(self.text_img_gen)[0] res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words]) if word_batch['the_input'][0].shape[0] < 256: cols = 2 else: cols = 1 for i in range(self.num_display_words): pylab.subplot(self.num_display_words // cols, cols, i + 1) if K.image_dim_ordering() == 'th': the_input = word_batch['the_input'][i, 0, :, :] else: the_input = word_batch['the_input'][i, :, :, 0] pylab.imshow(the_input.T, cmap='Greys_r') pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i])) fig = pylab.gcf() fig.set_size_inches(10, 13) pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch))) pylab.close()
def train(sentences,discriminator_gen=discriminator_gen,discriminator=discriminator,gen_model=gen_model): data,real_word=getData(sentences) fake_word=gen_model.predict(data) pylab.imshow(fake_word[0][0], cmap=cm.Greens,origin='lower') real_label=np.zeros((1,)) fake_label=np.ones((1,)) #discriminator.predict(real_word) discriminator_gen.fit(data,fake_label,nb_epoch=5) fake_word=gen_model.predict(data) discriminator.fit(fake_word,real_label,nb_epoch=5) discriminator.fit(real_word,fake_label,nb_epoch=5)
def tile_images(image_batch, image_width=28, image_height=28, image_channel=1, dir=None, filename="images"): if dir is None: raise Exception() try: os.mkdir(dir) except: pass fig = pylab.gcf() fig.set_size_inches(16.0, 16.0) pylab.clf() pylab.gray() for m in range(100): pylab.subplot(10, 10, m + 1) pylab.imshow(image_batch[m].reshape((image_width, image_height)), interpolation="none") pylab.axis("off") pylab.savefig("{}/{}.png".format(dir, filename))
def view_(_pred,_lable): fname = ['Captcha/lv3/%i.jpg' %i for i in range(20)] img = [] for fn in fname: img.append(Image.open(open(fn))) #img.append(misc.imread(fn).astype(np.float)) for i in range(len(img)): pylab.subplot(4,5,i+1); pylab.axis('off') pylab.imshow(img[i]) #pylab.imshow( np.dot(np.array(img[i])[...,:3],[0.299,0.587,0.114]) , cmap=plt.get_cmap("gray")) #pylab.text(40,60,_pred[i],color = 'b') if ( _pred[i] == _lable[i] ): pylab.text(40,65,_pred[i],color = 'b',size = 15) else: pylab.text(40,65,_pred[i],color = 'r',size = 15) pylab.text(40,92,_lable[i],color = 'g',size = 15) pylab.show()
def visualize_reconstruction(xp, model, x, visualization_dir, epoch, gpu=False): x_variable = chainer.Variable(xp.asarray(x)) _x = model.decode(model.encode(x_variable), test=True) _x.to_cpu() _x = _x.data fig = pylab.gcf() fig.set_size_inches(8.0, 8.0) pylab.clf() pylab.gray() for m in range(50): i = m / 10 j = m % 10 pylab.subplot(10, 10, 20 * i + j + 1, xticks=[], yticks=[]) pylab.imshow(x[m].reshape((28, 28)), interpolation="none") pylab.subplot(10, 10, 20 * i + j + 10 + 1, xticks=[], yticks=[]) pylab.imshow(_x[m].reshape((28, 28)), interpolation="none") # pylab.imshow(np.clip((_x_batch.data[m] + 1.0) / 2.0, 0.0, 1.0).reshape( # (config.img_channel, config.img_width, config.img_width)), interpolation="none") pylab.axis("off") pylab.savefig("{}/reconstruction_{}.png".format(visualization_dir, epoch)) # pylab.show()
def plot_2D_heat_map(states,p,labels, inter=False): import pylab as pl X = np.unique(states[0,:]) Y = np.unique(states[1,:]) X_len = len(X) Y_len = len(Y) Z = np.zeros((X.max()+1,Y.max()+1)) for i in range(len(p)): Z[states[0,i],states[1,i]] = p[i] pl.clf() pl.imshow(Z.T, origin='lower') pl.xlabel(labels[0]) pl.ylabel(labels[1]) if inter== True: pl.draw() else: pl.show()
def tile_binary_images(x, dir=None, filename="x", row=10, col=10): if dir is None: raise Exception() try: os.mkdir(dir) except: pass fig = pylab.gcf() fig.set_size_inches(col * 2, row * 2) pylab.clf() pylab.gray() for m in range(row * col): pylab.subplot(row, col, m + 1) pylab.imshow(np.clip(x[m], 0, 1), interpolation="none") pylab.axis("off") pylab.savefig("{}/{}.png".format(dir, filename))
def visualiseNormObject(self): shape = (2*self.extent, 2*self.extent) pylab.ion() pylab.clf() #pylab.set_cmap("bone") pylab.hot() pylab.title("image: %s" % self.fitsFile) pylab.imshow(np.reshape(self.signPreserveNorm(), shape, order="F"), interpolation="nearest") pylab.plot(np.arange(0,2*self.extent), self.extent*np.ones((2*self.extent,)), "r--") pylab.plot(self.extent*np.ones((2*self.extent,)), np.arange(0,2*self.extent), "r--") pylab.colorbar() pylab.ylim(-1, 2*self.extent) pylab.xlim(-1, 2*self.extent) pylab.xlabel("Pixels") pylab.ylabel("Pixels") pylab.show()
def tile_binary_images(x, dir=None, filename="x"): if dir is None: raise Exception() try: os.mkdir(dir) except: pass fig = pylab.gcf() fig.set_size_inches(16.0, 16.0) pylab.clf() pylab.gray() for m in range(100): pylab.subplot(10, 10, m + 1) pylab.imshow(np.clip(x[m], 0, 1), interpolation="none") pylab.axis("off") pylab.savefig("{}/{}.png".format(dir, filename))
def generate(self, filename, show=True): '''Generate a sample sequence, plot the resulting piano-roll and save it as a MIDI file. filename : string A MIDI file will be created at this location. show : boolean If True, a piano-roll of the generated sequence will be shown.''' piano_roll = self.generate_function() midiwrite(filename, piano_roll, self.r, self.dt) if show: extent = (0, self.dt * len(piano_roll)) + self.r pylab.figure() pylab.imshow(piano_roll.T, origin='lower', aspect='auto', interpolation='nearest', cmap=pylab.cm.gray_r, extent=extent) pylab.xlabel('time (s)') pylab.ylabel('MIDI note number') pylab.title('generated piano-roll')
def visualize_x(reconstructed_x_batch, image_width=28, image_height=28, image_channel=1, dir=None): if dir is None: raise Exception() try: os.mkdir(dir) except: pass fig = pylab.gcf() fig.set_size_inches(16.0, 16.0) pylab.clf() if image_channel == 1: pylab.gray() for m in range(100): pylab.subplot(10, 10, m + 1) if image_channel == 1: pylab.imshow(reconstructed_x_batch[m].reshape((image_width, image_height)), interpolation="none") elif image_channel == 3: pylab.imshow(reconstructed_x_batch[m].reshape((image_channel, image_width, image_height)), interpolation="none") pylab.axis("off") pylab.savefig("%s/reconstructed_x.png" % dir)
def convert16to8(self, smooth = False): if smooth: matout = self.smooth else: matout = self.image p = np.percentile(matout, 98) lowp = np.percentile(matout, 1) matout -= lowp if p == 0: p = np.max(matout) #print lowp, p, np.max(matout) matout[matout < 0] = 0 matout[matout > p] = p #pylab.imshow(matout/p*255, 'gray') #pylab.show() return np.array(matout/p*255, np.uint8)
def removeIllumination2(self, size, title = ''): out = ndimage.filters.gaussian_filter(self.image, size) pylab.figure() pylab.subplot(2,2,1) pylab.axis('off') pylab.imshow(self.image) pylab.subplot(2,2,2) pylab.axis('off') pylab.imshow(out) pylab.subplot(2,2,3) pylab.axis('off') pylab.imshow(self.image - out) pylab.subplot(2,2,4) pylab.axis('off') pylab.imshow(self.smooth - out) if title != '': pylab.savefig(title) pylab.close() else: pylab.show() self.smooth -= out return self.image - out
def plotFields(layer,fieldShape=None,channel=None,figOffset=1,cmap=None,padding=0.01): # Receptive Fields Summary try: W = layer.W except: W = layer wp = W.eval().transpose(); if len(np.shape(wp)) < 4: # Fully connected layer, has no shape fields = np.reshape(wp,list(wp.shape[0:-1])+fieldShape) else: # Convolutional layer already has shape features, channels, iy, ix = np.shape(wp) if channel is not None: fields = wp[:,channel,:,:] else: fields = np.reshape(wp,[features*channels,iy,ix]) perRow = int(math.floor(math.sqrt(fields.shape[0]))) perColumn = int(math.ceil(fields.shape[0]/float(perRow))) fig = mpl.figure(figOffset); mpl.clf() # Using image grid from mpl_toolkits.axes_grid1 import ImageGrid grid = ImageGrid(fig,111,nrows_ncols=(perRow,perColumn),axes_pad=padding,cbar_mode='single') for i in range(0,np.shape(fields)[0]): im = grid[i].imshow(fields[i],cmap=cmap); grid.cbar_axes[0].colorbar(im) mpl.title('%s Receptive Fields' % layer.name) # old way # fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))]) # tiled = [] # for i in range(0,perColumn*perRow,perColumn): # tiled.append(np.hstack(fields2[i:i+perColumn])) # # tiled = np.vstack(tiled) # mpl.figure(figOffset); mpl.clf(); mpl.imshow(tiled,cmap=cmap); mpl.title('%s Receptive Fields' % layer.name); mpl.colorbar(); mpl.figure(figOffset+1); mpl.clf(); mpl.imshow(np.sum(np.abs(fields),0),cmap=cmap); mpl.title('%s Total Absolute Input Dependency' % layer.name); mpl.colorbar()
def plotOutput(layer,feed_dict,fieldShape=None,channel=None,figOffset=1,cmap=None): # Output summary try: W = layer.output except: W = layer wp = W.eval(feed_dict=feed_dict); if len(np.shape(wp)) < 4: # Fully connected layer, has no shape temp = np.zeros(np.product(fieldShape)); temp[0:np.shape(wp.ravel())[0]] = wp.ravel() fields = np.reshape(temp,[1]+fieldShape) else: # Convolutional layer already has shape wp = np.rollaxis(wp,3,0) features, channels, iy,ix = np.shape(wp) if channel is not None: fields = wp[:,channel,:,:] else: fields = np.reshape(wp,[features*channels,iy,ix]) perRow = int(math.floor(math.sqrt(fields.shape[0]))) perColumn = int(math.ceil(fields.shape[0]/float(perRow))) fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))]) tiled = [] for i in range(0,perColumn*perRow,perColumn): tiled.append(np.hstack(fields2[i:i+perColumn])) tiled = np.vstack(tiled) if figOffset is not None: mpl.figure(figOffset); mpl.clf(); mpl.imshow(tiled,cmap=cmap); mpl.title('%s Output' % layer.name); mpl.colorbar();
def plotFields(layer,fieldShape=None,channel=None,maxFields=25,figName='ReceptiveFields',cmap=None,padding=0.01): # Receptive Fields Summary W = layer.W wp = W.eval().transpose(); if len(np.shape(wp)) < 4: # Fully connected layer, has no shape fields = np.reshape(wp,list(wp.shape[0:-1])+fieldShape) else: # Convolutional layer already has shape features, channels, iy, ix = np.shape(wp) if channel is not None: fields = wp[:,channel,:,:] else: fields = np.reshape(wp,[features*channels,iy,ix]) fieldsN = min(fields.shape[0],maxFields) perRow = int(math.floor(math.sqrt(fieldsN))) perColumn = int(math.ceil(fieldsN/float(perRow))) fig = mpl.figure(figName); mpl.clf() # Using image grid from mpl_toolkits.axes_grid1 import ImageGrid grid = ImageGrid(fig,111,nrows_ncols=(perRow,perColumn),axes_pad=padding,cbar_mode='single') for i in range(0,fieldsN): im = grid[i].imshow(fields[i],cmap=cmap); grid.cbar_axes[0].colorbar(im) mpl.title('%s Receptive Fields' % layer.name) # old way # fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))]) # tiled = [] # for i in range(0,perColumn*perRow,perColumn): # tiled.append(np.hstack(fields2[i:i+perColumn])) # # tiled = np.vstack(tiled) # mpl.figure(figOffset); mpl.clf(); mpl.imshow(tiled,cmap=cmap); mpl.title('%s Receptive Fields' % layer.name); mpl.colorbar(); mpl.figure(figName+' Total'); mpl.clf(); mpl.imshow(np.sum(np.abs(fields),0),cmap=cmap); mpl.title('%s Total Absolute Input Dependency' % layer.name); mpl.colorbar()
def plotOutput(layer,feed_dict,fieldShape=None,channel=None,figOffset=1,cmap=None): # Output summary W = layer.output wp = W.eval(feed_dict=feed_dict); if len(np.shape(wp)) < 4: # Fully connected layer, has no shape temp = np.zeros(np.product(fieldShape)); temp[0:np.shape(wp.ravel())[0]] = wp.ravel() fields = np.reshape(temp,[1]+fieldShape) else: # Convolutional layer already has shape wp = np.rollaxis(wp,3,0) features, channels, iy,ix = np.shape(wp) if channel is not None: fields = wp[:,channel,:,:] else: fields = np.reshape(wp,[features*channels,iy,ix]) perRow = int(math.floor(math.sqrt(fields.shape[0]))) perColumn = int(math.ceil(fields.shape[0]/float(perRow))) fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))]) tiled = [] for i in range(0,perColumn*perRow,perColumn): tiled.append(np.hstack(fields2[i:i+perColumn])) tiled = np.vstack(tiled) if figOffset is not None: mpl.figure(figOffset); mpl.clf(); mpl.imshow(tiled,cmap=cmap); mpl.title('%s Output' % layer.name); mpl.colorbar();
def view_performance(file_name, triggers, lims=(150,150)): params = CircusParser(file_name) N_e = params.getint('data', 'N_e') N_total = params.getint('data', 'N_total') sampling_rate = params.getint('data', 'sampling_rate') do_temporal_whitening = params.getboolean('whitening', 'temporal') do_spatial_whitening = params.getboolean('whitening', 'spatial') spike_thresh = params.getfloat('detection', 'spike_thresh') file_out_suff = params.get('data', 'file_out_suff') N_t = params.getint('detection', 'N_t') nodes, edges = get_nodes_and_edges(params) chunk_size = N_t if do_spatial_whitening: spatial_whitening = load_data(params, 'spatial_whitening') if do_temporal_whitening: temporal_whitening = load_data(params, 'temporal_whitening') thresholds = load_data(params, 'thresholds') try: result = load_data(params, 'results') except Exception: result = {'spiketimes' : {}, 'amplitudes' : {}} curve = numpy.zeros((len(triggers), len(result['spiketimes'].keys()), lims[1]+lims[0]), dtype=numpy.int32) count = 0 for count, t_spike in enumerate(triggers): for key in result['spiketimes'].keys(): elec = int(key.split('_')[1]) idx = numpy.where((result['spiketimes'][key] > t_spike - lims[0]) & (result['spiketimes'][key] < t_spike + lims[0])) curve[count, elec, t_spike - result['spiketimes'][key][idx]] += 1 pylab.subplot(111) pylab.imshow(numpy.mean(curve, 0), aspect='auto') return curve
def view_whitening(data): pylab.subplot(121) pylab.imshow(data['spatial'], interpolation='nearest') pylab.title('Spatial') pylab.xlabel('# Electrode') pylab.ylabel('# Electrode') pylab.colorbar() pylab.subplot(122) pylab.title('Temporal') pylab.plot(data['temporal']) pylab.xlabel('Time [ms]') x, y = pylab.xticks() pylab.xticks(x, (x-x[-1]//2)//10) pylab.tight_layout()
def get_performance(file_name, name): a, b = os.path.splitext(os.path.basename(file_name)) file_name, ext = os.path.splitext(file_name) file_out = os.path.join(os.path.abspath(file_name), a) data = {} result = h5py.File(file_out + '.basis.hdf5') data['spatial'] = result.get('spatial')[:] data['temporal'] = numpy.zeros(61) #result.get('temporal')[:] pylab.figure() pylab.subplot(121) pylab.imshow(data['spatial'], interpolation='nearest') pylab.title('Spatial') pylab.xlabel('# Electrode') pylab.ylabel('# Electrode') pylab.colorbar() pylab.subplot(122) pylab.title('Temporal') pylab.plot(data['temporal']) pylab.xlabel('Time [ms]') x, y = pylab.xticks() pylab.xticks(x, (x-x[-1]//2)//10) pylab.tight_layout() plot_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '.')) plot_path = os.path.join(plot_path, 'plots') plot_path = os.path.join(plot_path, 'whitening') if not os.path.exists(plot_path): os.makedirs(plot_path) output = os.path.join(plot_path, '%s.pdf' %name) pylab.savefig(output) return data
def showlabels(x,n=7): pylab.imshow(where(x>0,x%n+1,0),cmap=pylab.cm.gist_stern)
def plotgrid(data,d=10,shape=(30,30)): """Plot a list of images on a grid.""" ion() gray() clf() for i in range(min(d*d,len(data))): subplot(d,d,i+1) row = data[i] if shape is not None: row = row.reshape(shape) imshow(row) ginput(1,timeout=0.1)
def showrgb(r,g=None,b=None): if g is None: g = r if b is None: b = r imshow(array([r,g,b]).transpose([1,2,0]))
def showgrid(l,cols=None,n=400,titles=None,xlabels=None,ylabels=None,**kw): if "cmap" not in kw: kw["cmap"] = cm.gray if "interpolation" not in kw: kw["interpolation"] = "nearest" n = minimum(n,len(l)) if cols is None: cols = int(sqrt(n)) rows = (n+cols-1)//cols for i in range(n): pylab.xticks([]) ;pylab.yticks([]) pylab.subplot(rows,cols,i+1) pylab.imshow(l[i],**kw) if titles is not None: pylab.title(str(titles[i])) if xlabels is not None: pylab.xlabel(str(xlabels[i])) if ylabels is not None: pylab.ylabel(str(ylabels[i]))
def edgeplot(self, TT, ps): for ei,X in enumerate(self.edges): (i, j) = X[:2] Ta = TT[i] Tb = TT[j] plt.clf() if len(Ta) > 1000: nbins = 101 ra = np.hstack((Ta.ra, Tb.ra)) dec = np.hstack((Ta.dec, Tb.dec)) H,xe,ye = np.histogram2d(ra, dec, bins=nbins) (matchRA, matchDec, dr,dd) = self.edge_matches(ei, goodonly=True) G,xe,ye = np.histogram2d(matchRA, matchDec, bins=(xe,ye)) assert(G.shape == H.shape) img = antigray(H / H.max()) img[G>0,:] = matplotlib.cm.hot(G[G>0] / H[G>0]) ax = setRadecAxes(xe[0], xe[-1], ye[0], ye[-1]) plt.imshow(img, extent=(min(xe), max(xe), min(ye), max(ye)), aspect='auto', origin='lower', interpolation='nearest') plt.axis(ax) else: self.plotallstars([Ta,Tb]) self.plotmatchedstars(ei) plt.xlabel('RA (deg)') plt.ylabel('Dec (deg)') ps.savefig() # one plot per edge
def plot(self, overlay_alpha=0.5): import pylab as pl #pl.imshow(self.image) tinted = ((1-overlay_alpha)*self.image + overlay_alpha*colorize(np.argmax(self.features, 0), self.colors)) from skimage.segmentation import mark_boundaries tinted = mark_boundaries(tinted.clip(0, 255).astype(np.uint8), np.argmax(self.features, 0)) pl.imshow(tinted)
def plot_grids(self): import pylab as pl pl.imshow(self.rectified) for facade in self.facade_candidates: facade.plot()
def plot_regions(self, fill=True, alpha=0.5): import pylab as pl pl.imshow(self.rectified) for facade in self.facade_candidates: assert isinstance(facade, FacadeCandidate) facade.plot_regions(fill=fill, alpha=alpha)
def on_epoch_end(self, epoch, logs={}): self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch))) self.show_edit_distance(256) word_batch = next(self.text_img_gen)[0] res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words]) if word_batch['the_input'][0].shape[0] < 256: cols = 2 else: cols = 1 for i in range(self.num_display_words): pylab.subplot(self.num_display_words // cols, cols, i + 1) if K.image_data_format() == 'channels_first': the_input = word_batch['the_input'][i, 0, :, :] else: the_input = word_batch['the_input'][i, :, :, 0] pylab.imshow(the_input.T, cmap='Greys_r') pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i])) fig = pylab.gcf() fig.set_size_inches(10, 13) pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch))) pylab.close()
def snapshot(self, fn = None, clip_ratio = None): import matplotlib.pylab as pylab pylab.figure(2) self.transfer_function.show() pylab.draw() im = Camera.snapshot(self, fn, clip_ratio) pylab.figure(1) pylab.imshow(im / im.max()) pylab.draw() self.frames.append(im)
def plot_channel(image, name, cmap='gist_heat', log=True, dex=3, zero_factor=1.0e-10, label=None, label_color='w', label_size='large'): """ This function will plot a single channel. *image* is an array shaped like (N,M), *name* is the pefix for the output filename. *cmap* is the name of the colormap to apply, *log* is whether or not the channel should be logged. Additionally, you may optionally specify the minimum-value cutoff for scaling as *dex*, which is taken with respect to the minimum value of the image. *zero_factor* applies a minimum value to all zero-valued elements. Optionally, *label*, *label_color* and *label_size* may be specified. """ import matplotlib import pylab Nvec = image.shape[0] image[np.isnan(image)] = 0.0 ma = image[image>0.0].max() image[image==0.0] = ma*zero_factor if log: mynorm = matplotlib.colors.LogNorm(ma/(10.**dex), ma) pylab.clf() pylab.gcf().set_dpi(100) pylab.gcf().set_size_inches((Nvec/100.0, Nvec/100.0)) pylab.gcf().subplots_adjust(left=0.0, right=1.0, bottom=0.0, top=1.0, wspace=0.0, hspace=0.0) mycm = pylab.cm.get_cmap(cmap) if log: pylab.imshow(image,cmap=mycm, norm=mynorm, interpolation='nearest') else: pylab.imshow(image,cmap=mycm, interpolation='nearest') if label is not None: pylab.text(20, 20,label, color = label_color, size=label_size) pylab.savefig("%s_%s.png" % (name,cmap)) pylab.clf()
def main(): parser = buildArgsParser() args = parser.parse_args() # Load experiments hyperparameters try: hyperparams = smartutils.load_dict_from_json_file(pjoin(args.experiment, "hyperparams.json")) except: hyperparams = smartutils.load_dict_from_json_file(pjoin(args.experiment, '..', "hyperparams.json")) model = load_model(args.experiment) print(str(model)) with Timer("Generating {} samples from Conv Deep NADE".format(args.count)): sample = model.build_sampling_function(seed=args.seed) samples, probs = sample(args.count, return_probs=True, ordering_seed=args.seed) if args.out is not None: outfile = pjoin(args.experiment, args.out) with Timer("Saving {0} samples to '{1}'".format(args.count, outfile)): np.save(outfile, samples) if args.view: import pylab as plt from convnade import vizu if hyperparams["dataset"] == "binarized_mnist": image_shape = (28, 28) else: raise ValueError("Unknown dataset: {0}".format(hyperparams["dataset"])) plt.figure() data = vizu.concatenate_images(samples, shape=image_shape, border_size=1, clim=(0, 1)) plt.imshow(data, cmap=plt.cm.gray, interpolation='nearest') plt.title("Samples") plt.figure() data = vizu.concatenate_images(probs, shape=image_shape, border_size=1, clim=(0, 1)) plt.imshow(data, cmap=plt.cm.gray, interpolation='nearest') plt.title("Probs") plt.show()