Python pylab 模块,scatter() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用pylab.scatter()

项目:ugali    作者:DarkEnergySurvey    | 项目源码 | 文件源码
def twoDimensionalScatter(title, title_x, title_y,
                          x, y,
                          lim_x = None, lim_y = None,
                          color = 'b', size = 20, alpha=None):
    """
    Create a two-dimensional scatter plot.

    INPUTS
    """
    pylab.figure()

    pylab.scatter(x, y, c=color, s=size, alpha=alpha, edgecolors='none')

    pylab.xlabel(title_x)
    pylab.ylabel(title_y)
    pylab.title(title)
    if type(color) is not str:
        pylab.colorbar()

    if lim_x:
        pylab.xlim(lim_x[0], lim_x[1])
    if lim_y:
        pylab.ylim(lim_y[0], lim_y[1])

############################################################
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def view_dataset(X, color='blue', title=None, save=None):
    n_components = 2
    pca = PCA(n_components)
    pca.fit(X)
    x = pca.transform(X)
    fig = pylab.figure()
    ax = fig.add_subplot(1, 1, 1)
    ax.scatter(x[:, 0], x[:, 1], c=color, s=5, lw=0.1)
    ax.grid(True)
    if title is None:
        ax.set_title("Dataset ({} samples)".format(X.shape[0]))
    else:
        ax.set_title(title + " ({} samples)".format(X.shape[0]))
    ax.set_xlabel("1st component")
    ax.set_ylabel("2nd component")
    if save is None:
        pylab.show()
    else:
        pylab.savefig(save)
        pylab.close(fig)
    return
项目:PortfolioTimeSeriesAnalysis    作者:MizioAnd    | 项目源码 | 文件源码
def predicted_vs_actual_y_xgb(self, xgb, best_nrounds, xgb_params, x_train_split, x_test_split, y_train_split,
                                  y_test_split, title_name):
        # Split the training data into an extra set of test
        # x_train_split, x_test_split, y_train_split, y_test_split = train_test_split(x_train, y_train)
        dtrain_split = xgb.DMatrix(x_train_split, label=y_train_split)
        dtest_split = xgb.DMatrix(x_test_split)
        print(np.shape(x_train_split), np.shape(x_test_split), np.shape(y_train_split), np.shape(y_test_split))
        gbdt = xgb.train(xgb_params, dtrain_split, best_nrounds)
        y_predicted = gbdt.predict(dtest_split)
        plt.figure(figsize=(10, 5))
        plt.scatter(y_test_split, y_predicted, s=20)
        rmse_pred_vs_actual = self.rmse(y_predicted, y_test_split)
        plt.title(''.join([title_name, ', Predicted vs. Actual.', ' rmse = ', str(rmse_pred_vs_actual)]))
        plt.xlabel('Actual y')
        plt.ylabel('Predicted y')
        plt.plot([min(y_test_split), max(y_test_split)], [min(y_test_split), max(y_test_split)])
        plt.tight_layout()
项目:nn4nlp-code    作者:neubig    | 项目源码 | 文件源码
def display_data(word_vectors, words, target_words=None):
  target_matrix = word_vectors.copy()
  if target_words:
    target_words = [line.strip().lower() for line in open(target_words)][:2000]
    rows = [words.index(word) for word in target_words if word in words]
    target_matrix = target_matrix[rows,:]
  else:
    rows = np.random.choice(len(word_vectors), size=1000, replace=False)
    target_matrix = target_matrix[rows,:]
  reduced_matrix = tsne(target_matrix, 2);

  Plot.figure(figsize=(200, 200), dpi=100)
  max_x = np.amax(reduced_matrix, axis=0)[0]
  max_y = np.amax(reduced_matrix, axis=0)[1]
  Plot.xlim((-max_x,max_x))
  Plot.ylim((-max_y,max_y))

  Plot.scatter(reduced_matrix[:, 0], reduced_matrix[:, 1], 20);

  for row_id in range(0, len(rows)):
      target_word = words[rows[row_id]]
      x = reduced_matrix[row_id, 0]
      y = reduced_matrix[row_id, 1]
      Plot.annotate(target_word, (x,y))
  Plot.savefig("word_vectors.png");
项目:HousePrices    作者:MizioAnd    | 项目源码 | 文件源码
def predicted_vs_actual_sale_price(self, x_train, y_train, title_name):
        # Split the training data into an extra set of test
        x_train_split, x_test_split, y_train_split, y_test_split = train_test_split(x_train, y_train)
        print(np.shape(x_train_split), np.shape(x_test_split), np.shape(y_train_split), np.shape(y_test_split))
        lasso = LassoCV(alphas=[0.0001, 0.0003, 0.0006, 0.001, 0.003, 0.006, 0.01, 0.03, 0.06, 0.1,
                                0.3, 0.6, 1],
                        max_iter=50000, cv=10)
        # lasso = RidgeCV(alphas=[0.0001, 0.0003, 0.0006, 0.001, 0.003, 0.006, 0.01, 0.03, 0.06, 0.1,
        #                         0.3, 0.6, 1], cv=10)

        lasso.fit(x_train_split, y_train_split)
        y_predicted = lasso.predict(X=x_test_split)
        plt.figure(figsize=(10, 5))
        plt.scatter(y_test_split, y_predicted, s=20)
        rmse_pred_vs_actual = self.rmse(y_predicted, y_test_split)
        plt.title(''.join([title_name, ', Predicted vs. Actual.', ' rmse = ', str(rmse_pred_vs_actual)]))
        plt.xlabel('Actual Sale Price')
        plt.ylabel('Predicted Sale Price')
        plt.plot([min(y_test_split), max(y_test_split)], [min(y_test_split), max(y_test_split)])
        plt.tight_layout()
项目:HousePrices    作者:MizioAnd    | 项目源码 | 文件源码
def predicted_vs_actual_sale_price_xgb(self, xgb_params, x_train, y_train, seed, title_name):
        # Split the training data into an extra set of test
        x_train_split, x_test_split, y_train_split, y_test_split = train_test_split(x_train, y_train)
        dtrain_split = xgb.DMatrix(x_train_split, label=y_train_split)
        dtest_split = xgb.DMatrix(x_test_split)

        res = xgb.cv(xgb_params, dtrain_split, num_boost_round=1000, nfold=4, seed=seed, stratified=False,
                     early_stopping_rounds=25, verbose_eval=10, show_stdv=True)

        best_nrounds = res.shape[0] - 1
        print(np.shape(x_train_split), np.shape(x_test_split), np.shape(y_train_split), np.shape(y_test_split))
        gbdt = xgb.train(xgb_params, dtrain_split, best_nrounds)
        y_predicted = gbdt.predict(dtest_split)
        plt.figure(figsize=(10, 5))
        plt.scatter(y_test_split, y_predicted, s=20)
        rmse_pred_vs_actual = self.rmse(y_predicted, y_test_split)
        plt.title(''.join([title_name, ', Predicted vs. Actual.', ' rmse = ', str(rmse_pred_vs_actual)]))
        plt.xlabel('Actual Sale Price')
        plt.ylabel('Predicted Sale Price')
        plt.plot([min(y_test_split), max(y_test_split)], [min(y_test_split), max(y_test_split)])
        plt.tight_layout()
项目:adversarial-autoencoder    作者:musyoku    | 项目源码 | 文件源码
def scatter_labeled_z(z_batch, label_batch, filename="labeled_z"):
    fig = pylab.gcf()
    fig.set_size_inches(20.0, 16.0)
    pylab.clf()
    colors = ["#2103c8", "#0e960e", "#e40402","#05aaa8","#ac02ab","#aba808","#151515","#94a169", "#bec9cd", "#6a6551"]
    for n in range(z_batch.shape[0]):
        result = pylab.scatter(z_batch[n, 0], z_batch[n, 1], c=colors[label_batch[n]], s=40, marker="o", edgecolors='none')

    classes = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
    recs = []
    for i in range(0, len(colors)):
        recs.append(mpatches.Rectangle((0, 0), 1, 1, fc=colors[i]))

    ax = pylab.subplot(111)
    box = ax.get_position()
    ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
    ax.legend(recs, classes, loc="center left", bbox_to_anchor=(1.1, 0.5))
    pylab.xticks(pylab.arange(-4, 5))
    pylab.yticks(pylab.arange(-4, 5))
    pylab.xlabel("z1")
    pylab.ylabel("z2")
    pylab.savefig(filename)
项目:tap    作者:mfouesneau    | 项目源码 | 文件源码
def scatter(self, lvl=None, **kwargs):
        defaults = {'c': '0.0', 'color':'k', 'facecolor':'k', 'edgecolor':'None'}
        defaults.update(**kwargs)

        xe = self.e[0] + self.dx * np.arange(0, self.im.shape[1])
        ye = self.e[2] + self.dy * np.arange(0, self.im.shape[0])
        x = self.x
        y = self.y

        if lvl is not None:
            nx = np.ceil(np.interp(x, 0.5 * (xe[:-1] + xe[1:]), range(len(xe) - 1)))
            ny = np.ceil(np.interp(y, 0.5 * (ye[:-1] + ye[1:]), range(len(ye) - 1)))
            nh = [ self.im[nx[k], ny[k]] for k in range(len(x)) ]
            ind = np.where(nh < np.min(lvl))
            plt.scatter(x[ind], y[ind], **kwargs)
        else:
            plt.scatter(x, y, **kwargs)
项目:ugali    作者:DarkEnergySurvey    | 项目源码 | 文件源码
def starPlot(targ_ra, targ_dec, data, iso, g_radius, nbhd):
    """Star bin plot"""

    mag_g = data[mag_g_dred_flag]
    mag_r = data[mag_r_dred_flag]

    filter = star_filter(data)

    iso_filter = (iso.separation(mag_g, mag_r) < 0.1)

    # projection of image
    proj = ugali.utils.projector.Projector(targ_ra, targ_dec)
    x, y = proj.sphereToImage(data[filter & iso_filter]['RA'], data[filter & iso_filter]['DEC'])

    plt.scatter(x, y, edgecolor='none', s=3, c='black')
    plt.xlim(0.2, -0.2)
    plt.ylim(-0.2, 0.2)
    plt.gca().set_aspect('equal')
    plt.xlabel(r'$\Delta \alpha$ (deg)')
    plt.ylabel(r'$\Delta \delta$ (deg)')

    plt.title('Stars')
项目:spyking-circus-ort    作者:spyking-circus    | 项目源码 | 文件源码
def _plot(self):
        # Called from the main thread
        pylab.ion()

        if not getattr(self, 'data_available', False):
            return

        if self.peaks is not None:

            for key in self.sign_peaks:
                for channel in self.peaks[key].keys():
                    self.rates[key][int(channel)] += len(self.peaks[key][channel])

            pylab.scatter(self.positions[0, :], self.positions[1, :], c=self.rates[key])

        pylab.gca().set_title('Buffer %d' %self.counter)
        pylab.draw()
        return
项目:spyking-circus-ort    作者:spyking-circus    | 项目源码 | 文件源码
def view_positions(self, indices=None, time=None):
        if time is None:
            time = 0
        res = self.synthetic_store.get(indices=indices, variables=['x', 'y', 'z'])
        pylab.figure()

        all_x = []
        all_y = []
        all_z = []
        all_c = []

        for key in res.keys():
            all_x += [res[key]['x'][time]]
            all_y += [res[key]['y'][time]]
            all_z += [res[key]['z'][time]]
            all_c += [self._scalarMap_synthetic.to_rgba(int(key))]

        pylab.scatter(self.probe.positions[0, :], self.probe.positions[1, :], c='k')
        pylab.scatter(all_x, all_y, c=all_c)
        pylab.show()
项目:PyPeVoc    作者:goiosunsw    | 项目源码 | 文件源码
def plot_time_freq(self, colors=True, ax=None):
        import pylab as pl

        if ax is None:
            fig, allax = pl.subplots(1)
            ax = allax

        # make time matrix same shape as others
        t = np.outer(self.t, np.ones(self.npeaks))
        f = self.f
        if colors:
            mag = 20*np.log10(self.mag)
            ax.scatter(t, f, s=6, c=mag, lw=0)
        else:
            mag = 100 + 20*np.log10(self.mag)
            ax.scatter(t, f, s=mag, lw=0)
        pl.xlabel('Time (s)')
        pl.ylabel('Frequency (Hz)')
        # if colors:
        # cs = pl.colorbar(ax=ax)
        # cs.set_label('Magnitude (dB)')
        # pl.show()
        return ax
项目:PyPeVoc    作者:goiosunsw    | 项目源码 | 文件源码
def plot_time_mag(self):
        import pylab as pl

        pl.figure()
        t = np.outer(self.t, np.ones(self.npeaks))
        # f = np.log2(self.f)
        f = self.f
        mag = 20*np.log10(self.mag)
        pl.scatter(t, mag, s=10, c=f, lw=0,
                   norm=pl.matplotlib.colors.LogNorm())
        pl.xlabel('Time (s)')
        pl.ylabel('Magnitude (dB)')
        cs = pl.colorbar()
        cs.set_label('Frequency (Hz)')
        # pl.show()
        return pl.gca()
项目:PyPeVoc    作者:goiosunsw    | 项目源码 | 文件源码
def plot_time_freq_mag(self, minlen=10, cm=pl.cm.rainbow):

        cadd = 30
        cmax = 256
        ccur = 0

        part = [pp for pp in self.partial if len(pp.f) > minlen]
        pl.figure()
        pl.hold(True)
        for pp in part:
            # pl.plot(pp.start_idx + np.arange(len(pp.f)), np.array(pp.f))
            mag = 100 + 20*np.log10(np.array(pp.mag))
            pl.scatter(pp.start_idx + np.arange(len(pp.f)), np.array(pp.f),
                       s=mag, c=cm(ccur), lw=0)
            ccur = np.mod(ccur + cadd, cmax)
        pl.hold(False)
        pl.xlabel('Time (s)')
        pl.ylabel('Frequency (Hz)')
        pl.show()
项目:adgm    作者:musyoku    | 项目源码 | 文件源码
def plot_z(z, dir=None, filename="z", xticks_range=None, yticks_range=None):
    if dir is None:
        raise Exception()
    try:
        os.mkdir(dir)
    except:
        pass
    fig = pylab.gcf()
    fig.set_size_inches(16.0, 16.0)
    pylab.clf()
    for n in xrange(z.shape[0]):
        result = pylab.scatter(z[n, 0], z[n, 1], s=40, marker="o", edgecolors='none')
    pylab.xlabel("z1")
    pylab.ylabel("z2")
    if xticks_range is not None:
        pylab.xticks(pylab.arange(-xticks_range, xticks_range + 1))
    if yticks_range is not None:
        pylab.yticks(pylab.arange(-yticks_range, yticks_range + 1))
    pylab.savefig("{}/{}.png".format(dir, filename))
项目:mglex    作者:fungs    | 项目源码 | 文件源码
def plot_clusters_pca(responsibilities, color_groups):
    from sklearn.decomposition import RandomizedPCA
    import pylab as pl
    from random import shuffle

    colors = list(colors_dict.values())
    shuffle(colors)

    pca = RandomizedPCA(n_components=2)
    X = pca.fit_transform(responsibilities)
    # print >>stderr, pca.explained_variance_ratio_

    pl.figure()
    pl.scatter(X[:, 0], X[:, 1], c="grey", label="unknown")
    for c, sub, i in zip(colors, color_groups, count(0)):
        pl.scatter(X[sub, 0], X[sub, 1], c=c, label=str(i))
    pl.legend()
    pl.title("PCA responsibility matrix")
    pl.show()
项目:variational-autoencoder    作者:musyoku    | 项目源码 | 文件源码
def visualize_labeled_z(z_batch, label_batch, dir=None):
    fig = pylab.gcf()
    fig.set_size_inches(20.0, 16.0)
    pylab.clf()
    colors = ["#2103c8", "#0e960e", "#e40402","#05aaa8","#ac02ab","#aba808","#151515","#94a169", "#bec9cd", "#6a6551"]
    for n in xrange(z_batch.shape[0]):
        result = pylab.scatter(z_batch[n, 0], z_batch[n, 1], c=colors[label_batch[n]], s=40, marker="o", edgecolors='none')

    classes = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
    recs = []
    for i in range(0, len(colors)):
        recs.append(mpatches.Rectangle((0, 0), 1, 1, fc=colors[i]))

    ax = pylab.subplot(111)
    box = ax.get_position()
    ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
    ax.legend(recs, classes, loc="center left", bbox_to_anchor=(1.1, 0.5))
    pylab.xticks(pylab.arange(-4, 5))
    pylab.yticks(pylab.arange(-4, 5))
    pylab.xlabel("z1")
    pylab.ylabel("z2")
    pylab.savefig("%s/labeled_z.png" % dir)
项目:livespin    作者:biocompibens    | 项目源码 | 文件源码
def draw2D_new(self):
        for i in xrange(self.nComponents):
            k1 = np.array([[self.params[6 * i + 3] ** 2, self.params[6 * i + 3] * self.params[6 * i + 4] * self.params[6 * i + 5]],
                           [self.params[6 * i + 3] * self.params[6 * i + 4] * self.params[6 * i + 5], self.params[6 * i + 4] ** 2]])
            w1, v1 = np.linalg.eig(k1)
            idx = w1.argsort()
            w1 = w1[idx]
            v1 = v1[:, idx]
            angle=-(np.arctan(v1[1][1]/v1[0][1]))+np.pi#x+2*(pi/4-x)+pi/2#since in the image X and Y are inverted, so need to minus 90 degree and flip around pi/4

            w2 = np.zeros((1 , 2))
            w2[0,1] = np.sqrt(2)*np.max([self.params[6 * i + 3], self.params[6 * i + 4]])
            w2[0,0] = w2[0,1]*w1[0]/w1[1]

            xeq = lambda t: w2[0,1] * np.cos(t) * np.cos(angle) + w2[0,0] * np.sin(
                t) * np.sin(angle) + self.params[6 * i + 1]
            yeq = lambda t: - w2[0,1] * np.cos(t) * np.sin(angle) + w2[0,0] * np.sin(
                t) * np.cos(angle) + self.params[6 * i + 2]
            t = np.linspace(0, 2 * np.pi, 100)
            x = xeq(t)
            y = yeq(t)
            pylab.scatter(self.params[6 * i + 2], self.params[6 * i +1], color='k')
            pylab.plot(y.astype(int), x.astype(int), self.colors[i] + '-')
项目:livespin    作者:biocompibens    | 项目源码 | 文件源码
def draw2D(self, title, image=[]):
        pylab.figure()
        if image == []:
            pylab.imshow(self.image, 'gray')
        else:
            pylab.imshow(image, 'gray')
        pylab.axis('off')
        pylab.autoscale(False)
        for i in xrange(self.nComponents):
            xeq = lambda t: self.params[6 * i + 3] * np.cos(t) * np.cos(self.params[6 * i + 5]) + self.params[
                                                                                                      6 * i + 4] * np.sin(
                t) * np.sin(self.params[6 * i + 5]) + self.params[6 * i + 1]
            yeq = lambda t: - self.params[6 * i + 3] * np.cos(t) * np.sin(self.params[6 * i + 5]) + self.params[
                                                                                                        6 * i + 4] * np.sin(
                t) * np.cos(self.params[6 * i + 5]) + self.params[6 * i + 2]
            t = np.linspace(0, 2 * np.pi, 100)
            x = xeq(t)
            y = yeq(t)
            pylab.scatter(self.params[6 * i + 2], self.params[6 * i + 1], color='k')
            pylab.plot(y.astype(int), x.astype(int), self.colors[i] + '-')
        pylab.savefig(title)
        pylab.close()
项目:PortfolioTimeSeriesAnalysis    作者:MizioAnd    | 项目源码 | 文件源码
def predicted_vs_actual_y_input_model(self, model, x_train_split, x_test_split, y_train_split, y_test_split,
                                          title_name):
        # Split the training data into an extra set of test
        # x_train_split, x_test_split, y_train_split, y_test_split = train_test_split(x_train, y_train)
        print(np.shape(x_train_split), np.shape(x_test_split), np.shape(y_train_split), np.shape(y_test_split))
        model.fit(x_train_split, y_train_split)
        y_predicted = model.predict(x_test_split)
        plt.figure(figsize=(10, 5))
        plt.scatter(y_test_split, y_predicted, s=20)
        rmse_pred_vs_actual = self.rmse(y_predicted, y_test_split)
        plt.title(''.join([title_name, ', Predicted vs. Actual.', ' rmse = ', str(rmse_pred_vs_actual)]))
        plt.xlabel('Actual y')
        plt.ylabel('Predicted y')
        plt.plot([min(y_test_split), max(y_test_split)], [min(y_test_split), max(y_test_split)])
        plt.tight_layout()
项目:facade-segmentation    作者:jfemiani    | 项目源码 | 文件源码
def plot_facade_cuts(self):

        facade_sig = self.facade_edge_scores.sum(0)
        facade_cuts = find_facade_cuts(facade_sig, dilation_amount=self.facade_merge_amount)
        mu = np.mean(facade_sig)
        sigma = np.std(facade_sig)

        w = self.rectified.shape[1]
        pad=10

        gs1 = pl.GridSpec(5, 5)
        gs1.update(wspace=0.5, hspace=0.0)  # set the spacing between axes.

        pl.subplot(gs1[:3, :])
        pl.imshow(self.rectified)
        pl.vlines(facade_cuts, *pl.ylim(), lw=2, color='black')
        pl.axis('off')
        pl.xlim(-pad, w+pad)

        pl.subplot(gs1[3:, :], sharex=pl.gca())
        pl.fill_between(np.arange(w), 0, facade_sig, lw=0, color='red')
        pl.fill_between(np.arange(w), 0, np.clip(facade_sig, 0, mu+sigma), color='blue')
        pl.plot(np.arange(w), facade_sig, color='blue')

        pl.vlines(facade_cuts, facade_sig[facade_cuts], pl.xlim()[1], lw=2, color='black')
        pl.scatter(facade_cuts, facade_sig[facade_cuts])

        pl.axis('off')

        pl.hlines(mu, 0, w, linestyle='dashed', color='black')
        pl.text(0, mu, '$\mu$ ', ha='right')

        pl.hlines(mu + sigma, 0, w, linestyle='dashed', color='gray',)
        pl.text(0, mu + sigma, '$\mu+\sigma$ ', ha='right')
        pl.xlim(-pad, w+pad)
项目:HousePrices    作者:MizioAnd    | 项目源码 | 文件源码
def predicted_vs_actual_sale_price_input_model(self, model, x_train, y_train, title_name):
        # Split the training data into an extra set of test
        x_train_split, x_test_split, y_train_split, y_test_split = train_test_split(x_train, y_train)
        print(np.shape(x_train_split), np.shape(x_test_split), np.shape(y_train_split), np.shape(y_test_split))
        model.fit(x_train_split, y_train_split)
        y_predicted = model.predict(x_test_split)
        plt.figure(figsize=(10, 5))
        plt.scatter(y_test_split, y_predicted, s=20)
        rmse_pred_vs_actual = self.rmse(y_predicted, y_test_split)
        plt.title(''.join([title_name, ', Predicted vs. Actual.', ' rmse = ', str(rmse_pred_vs_actual)]))
        plt.xlabel('Actual Sale Price')
        plt.ylabel('Predicted Sale Price')
        plt.plot([min(y_test_split), max(y_test_split)], [min(y_test_split), max(y_test_split)])
        plt.tight_layout()
项目:MLLearning    作者:buptdjd    | 项目源码 | 文件源码
def svm_figure_generate(w, b, support_vectors, X):
    k = - w[0]/w[1]
    x = np.linspace(-5, 5)
    y = k*x - b/w[1]
    sv_1 = support_vectors[0]
    yy_down = k*x + (sv_1[1]-k*sv_1[0])
    sv_2 = support_vectors[-1]
    yy_up = k*x + (sv_2[1] - k*sv_2[0])
    pl.plot(x, y, 'k-')
    pl.plot(x, yy_up, 'k--')
    pl.plot(x, yy_down, 'k--')
    pl.scatter(support_vectors[:, 0], support_vectors[:, 1], s=80, facecolor='none')
    pl.scatter(X[:, 0], X[:, 1], c='Y', cmap=pl.cm.Paired)
    pl.axis('tight')
    pl.show()
项目:adversarial-autoencoder    作者:musyoku    | 项目源码 | 文件源码
def scatter_z(z_batch, filename="z"):
    if dir is None:
        raise Exception()
    try:
        os.mkdir(dir)
    except:
        pass
    fig = pylab.gcf()
    fig.set_size_inches(20.0, 16.0)
    pylab.clf()
    for n in range(z_batch.shape[0]):
        result = pylab.scatter(z_batch[n, 0], z_batch[n, 1], s=40, marker="o", edgecolors='none')
    pylab.xlabel("z1")
    pylab.ylabel("z2")
    pylab.savefig(filename)
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def DrawScatt(pl, x,y, title=''):
    pl.figure
    prop = fm.FontProperties(fname="c:/windows/fonts/simsun.ttc")
    if title != "":
        pl.title(title, fontproperties=prop)
    pl.scatter(x,y)
    pl.ylabel(u"???", fontproperties=prop)
    pl.xlabel(u"????(?)", fontproperties=prop)
    pl.show()
    pl.close()
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def draw3d(df=None, titles=None, datas=None):
    """?3d"""
    #???c??????
    from mpl_toolkits.mplot3d.axes3d import Axes3D

    def genDf():
        df = pd.DataFrame([])
        for i in range(3):
            n = agl.array_random(100)
            df[i] = n
        return df
    if df is None:
        df = genDf()
    assert(len(df.columns)>=3)
    X, Y, Z = np.array(df[df.columns[0]]), np.array(df[df.columns[1]]), np.array(df[df.columns[2]])
    fig = plt.figure(figsize=(8,6))
    ax = fig.add_subplot(1, 1, 1, projection='3d')
    p = ax.scatter(X, Y, Z)

    if datas is not None:
        for i in range(len(datas)):
            df = datas[i][0]
            x, y, z = np.array(df[df.columns[0]]), np.array(df[df.columns[1]]), np.array(df[df.columns[2]])
            c = str(datas[i][1])
            ax.scatter(x,y,z, c=c)

    if titles is not None and len(titles)>=3:
        ax.set_xlabel(titles[0])
        ax.set_ylabel(titles[1])
        ax.set_zlabel(titles[2])    

    plt.show()
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def scatter(self, x, y, s=20, c='b', marker='o', cmap=None, norm=None, vmin=None,
                vmax=None, alpha=None, linewidths=None, verts=None, hold=None,
                **kwargs):
        pl.scatter(x,y,s,c,marker,cmap,norm,vmin,vmax,alpha,linewidths,verts,hold,**kwargs)
项目:tap    作者:mfouesneau    | 项目源码 | 文件源码
def plot(self, contour={}, scatter={}, **kwargs):
        # levels = np.linspace(self.im.min(), self.im.max(), 10)[1:]
        levels = self.nice_levels()
        c_defaults = {'origin': 'lower', 'cmap': plt.cm.Greys_r, 'levels':
                      levels}
        c_defaults.update(**contour)

        c = self.contourf(**c_defaults)

        lvls = np.sort(c.levels)
        s_defaults = {'c': '0.0', 'edgecolor':'None', 's':2}
        s_defaults.update(**scatter)

        self.scatter(lvl=[lvls], **s_defaults)
项目:chainer-adversarial-autoencoder    作者:fukuta0614    | 项目源码 | 文件源码
def visualize_10_2d_gaussian_prior(n_z, y_label, visualization_dir=None):
    z_batch = sample_z_from_n_2d_gaussian_mixture(len(y_label), n_z, y_label, 10, False)
    z_batch = z_batch.data

    fig = pylab.gcf()
    fig.set_size_inches(15, 12)
    pylab.clf()
    colors = ["#2103c8", "#0e960e", "#e40402", "#05aaa8", "#ac02ab", "#aba808", "#151515", "#94a169", "#bec9cd",
              "#6a6551"]
    for n in xrange(z_batch.shape[0]):
        result = pylab.scatter(z_batch[n, 0], z_batch[n, 1], c=colors[y_label[n]], s=40, marker="o",
                               edgecolors='none')

    classes = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
    recs = []
    for i in range(0, len(colors)):
        recs.append(mpatches.Rectangle((0, 0), 1, 1, fc=colors[i]))

    ax = pylab.subplot(111)
    box = ax.get_position()
    ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
    ax.legend(recs, classes, loc="center left", bbox_to_anchor=(1.1, 0.5))
    pylab.xticks(pylab.arange(-4, 5))
    pylab.yticks(pylab.arange(-4, 5))
    pylab.xlabel("z1")
    pylab.ylabel("z2")
    if visualization_dir is not None:
        pylab.savefig("%s/10_2d-gaussian.png" % visualization_dir)
    pylab.show()
项目:chainer-adversarial-autoencoder    作者:fukuta0614    | 项目源码 | 文件源码
def visualize_labeled_z(xp, model, x, y_label, visualization_dir, epoch, gpu=False):
    x = chainer.Variable(xp.asarray(x))
    z_batch = model.encode(x, test=True)
    z_batch.to_cpu()
    z_batch = z_batch.data
    fig = pylab.gcf()
    fig.set_size_inches(8.0, 8.0)
    pylab.clf()
    colors = ["#2103c8", "#0e960e", "#e40402", "#05aaa8", "#ac02ab", "#aba808", "#151515", "#94a169", "#bec9cd",
              "#6a6551"]
    for n in xrange(z_batch.shape[0]):
        result = pylab.scatter(z_batch[n, 0], z_batch[n, 1], c=colors[y_label[n]], s=40, marker="o",
                               edgecolors='none')

    classes = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
    recs = []
    for i in range(0, len(colors)):
        recs.append(mpatches.Rectangle((0, 0), 1, 1, fc=colors[i]))

    ax = pylab.subplot(111)
    box = ax.get_position()
    ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
    ax.legend(recs, classes, loc="center left", bbox_to_anchor=(1.1, 0.5))
    pylab.xticks(pylab.arange(-4, 5))
    pylab.yticks(pylab.arange(-4, 5))
    pylab.xlabel("z1")
    pylab.ylabel("z2")
    pylab.savefig("{}/labeled_z_{}.png".format(visualization_dir, epoch))
    # pylab.show()
项目:ugali    作者:DarkEnergySurvey    | 项目源码 | 文件源码
def cmPlot(targ_ra, targ_dec, data, iso, g_radius, nbhd, type):
    """Color-magnitude plot"""

    angsep = ugali.utils.projector.angsep(targ_ra, targ_dec, data['RA'], data['DEC'])
    annulus = (angsep > g_radius) & (angsep < 1.)

    mag_g = data[mag_g_dred_flag]
    mag_r = data[mag_r_dred_flag]

    if type == 'stars':
        filter = star_filter(data)
        plt.title('Stellar Color-Magnitude')
    elif type == 'galaxies':
        filter = galaxy_filter(data)
        plt.title('Galactic Color-Magnitude')

    iso_filter = (iso.separation(mag_g, mag_r) < 0.1)

    # Plot background objects
    plt.scatter(mag_g[filter & annulus] - mag_r[filter & annulus], mag_g[filter & annulus], c='k', alpha=0.1, edgecolor='none', s=1)

    # Plot isochrone
    ugali.utils.plotting.drawIsochrone(iso, lw=2, label='{} Gyr, z = {}'.format(iso.age, iso.metallicity))

    # Plot objects in nbhd
    plt.scatter(mag_g[filter & nbhd] - mag_r[filter & nbhd], mag_g[filter & nbhd], c='g', s=5, label='r < {:.3f}$^\circ$'.format(g_radius))

    # Plot objects in nbhd and near isochrone
    plt.scatter(mag_g[filter & nbhd & iso_filter] - mag_r[filter & nbhd & iso_filter], mag_g[filter & nbhd & iso_filter], c='r', s=5, label='$\Delta$CM < 0.1')

    plt.axis([-0.5, 1, 16, 24])
    plt.gca().invert_yaxis()
    plt.gca().set_aspect(1./4.)
    plt.legend(loc='upper left')
    plt.xlabel('g-r (mag)')
    plt.ylabel('g (mag)')
项目:ugali    作者:DarkEnergySurvey    | 项目源码 | 文件源码
def projScatter(lon, lat, **kwargs):
    """
    Create a scatter plot on HEALPix projected axes.
    Inputs: lon (deg), lat (deg)
    """
    healpy.projscatter(lon, lat, lonlat=True, **kwargs)

############################################################
项目:ugali    作者:DarkEnergySurvey    | 项目源码 | 文件源码
def drawSpatial(self, ax=None):
        if not ax: ax = plt.gca()
        # Stellar Catalog
        self._create_catalog()
        cut = (self.catalog.color > 0) & (self.catalog.color < 1)
        catalog = self.catalog.applyCut(cut)
        ax.scatter(catalog.lon,catalog.lat,c='k',marker='.',s=1)
        ax.set_xlim(self.glon-0.5,self.glon+0.5)
        ax.set_ylim(self.glat-0.5,self.glat+0.5)
        ax.set_xlabel('GLON (deg)')
        ax.set_ylabel('GLAT (deg)')
项目:ugali    作者:DarkEnergySurvey    | 项目源码 | 文件源码
def drawHessDiagram(self,catalog=None):
        ax = plt.gca()
        if not catalog: catalog = self.get_stars()

        r_peak = self.kernel.extension
        angsep = ugali.utils.projector.angsep(self.ra, self.dec, catalog.ra, catalog.dec)
        cut_inner = (angsep < r_peak)
        cut_annulus = (angsep > 0.5) & (angsep < 1.) # deg

        mmin, mmax = 16., 24.
        cmin, cmax = -0.5, 1.0
        mbins = np.linspace(mmin, mmax, 150)
        cbins = np.linspace(cmin, cmax, 150)

        color = catalog.color[cut_annulus]
        mag = catalog.mag[cut_annulus]

        h, xbins, ybins = numpy.histogram2d(color, mag, bins=[cbins,mbins])
        blur = nd.filters.gaussian_filter(h.T, 2)
        kwargs = dict(extent=[xbins.min(),xbins.max(),ybins.min(),ybins.max()],
                      cmap='gray_r', aspect='auto', origin='lower', 
                      rasterized=True, interpolation='none')
        ax.imshow(blur, **kwargs)

        pylab.scatter(catalog.color[cut_inner], catalog.mag[cut_inner], 
                      c='red', s=7, edgecolor='none')# label=r'$r < %.2f$ deg'%(r_peak))
        ugali.utils.plotting.drawIsochrone(self.isochrone, c='b', zorder=10)
        ax.set_xlim(-0.5, 1.)
        ax.set_ylim(24., 16.)
        plt.xlabel(r'$g - r$')
        plt.ylabel(r'$g$')
        plt.xticks([-0.5, 0., 0.5, 1.])
        plt.yticks(numpy.arange(mmax - 1., mmin - 1., -1.))

        radius_string = (r'${\rm r}<%.1f$ arcmin'%( 60 * r_peak))
        pylab.text(0.05, 0.95, radius_string, 
                   fontsize=10, ha='left', va='top', color='red', 
                   transform=pylab.gca().transAxes,
                   bbox=dict(facecolor='white', alpha=1., edgecolor='none'))
项目:ugali    作者:DarkEnergySurvey    | 项目源码 | 文件源码
def drawMembersSpatial(self,data):
        ax = plt.gca()
        if isinstance(data,basestring):
            filename = data
            data = pyfits.open(filename)[1].data

        xmin, xmax = -0.25,0.25
        ymin, ymax = -0.25,0.25
        xx,yy = np.meshgrid(np.linspace(xmin,xmax),np.linspace(ymin,ymax))

        x_prob, y_prob = sphere2image(self.ra, self.dec, data['RA'], data['DEC'])

        sel = (x_prob > xmin)&(x_prob < xmax) & (y_prob > ymin)&(y_prob < ymax)
        sel_prob = data['PROB'][sel] > 5.e-2
        index_sort = numpy.argsort(data['PROB'][sel][sel_prob])

        plt.scatter(x_prob[sel][~sel_prob], y_prob[sel][~sel_prob], 
                      marker='o', s=2, c='0.75', edgecolor='none')
        sc = plt.scatter(x_prob[sel][sel_prob][index_sort], 
                         y_prob[sel][sel_prob][index_sort], 
                         c=data['PROB'][sel][sel_prob][index_sort], 
                         marker='o', s=10, edgecolor='none', cmap='jet', vmin=0., vmax=1.) # Spectral_r

        drawProjImage(xx,yy,None,coord='C')

        #ax.set_xlim(xmax, xmin)
        #ax.set_ylim(ymin, ymax)
        #plt.xlabel(r'$\Delta \alpha_{2000}\,(\deg)$')
        #plt.ylabel(r'$\Delta \delta_{2000}\,(\deg)$')
        plt.xticks([-0.2, 0., 0.2])
        plt.yticks([-0.2, 0., 0.2])

        divider = make_axes_locatable(ax)
        ax_cb = divider.new_horizontal(size="7%", pad=0.1)
        plt.gcf().add_axes(ax_cb)
        pylab.colorbar(sc, cax=ax_cb, orientation='vertical', ticks=[0, 0.2, 0.4, 0.6, 0.8, 1.0], label='Membership Probability')
        ax_cb.yaxis.tick_right()
项目:ugali    作者:DarkEnergySurvey    | 项目源码 | 文件源码
def profileUpperLimit(self, delta = 2.71):
        """
        Compute one-sided upperlimit via profile method.
        """
        a = self.p_2
        b = self.p_1
        if self.vertex_x < 0:
            c = self.p_0 + delta
        else:
            c = self.p_0 - self.vertex_y + delta

        if b**2 - 4. * a * c < 0.:
            print 'WARNING'

            print a, b, c

            #pylab.figure()
            #pylab.scatter(self.x, self.y)
            #raw_input('WAIT')
            return 0.



        return max((numpy.sqrt(b**2 - 4. * a * c) - b) / (2. * a), (-1. * numpy.sqrt(b**2 - 4. * a * c) - b) / (2. * a)) 

    #def bayesianUpperLimit3(self, alpha, steps = 1.e5):
    #    """
    #    Compute one-sided upper limit using Bayesian Method of Helene.
    #    """
    #    # Need a check to see whether limit is reliable
    #    pdf = scipy.interpolate.interp1d(self.x, numpy.exp(self.y / 2.)) # Convert from 2 * log(likelihood) to likelihood
    #    x_pdf = numpy.linspace(self.x[0], self.x[-1], steps)
    #    cdf = numpy.cumsum(pdf(x_pdf))
    #    cdf /= cdf[-1]
    #    cdf_reflect = scipy.interpolate.interp1d(cdf, x_pdf)
    #    return cdf_reflect(alpha)
    #    #return self.x[numpy.argmin((cdf - alpha)**2)]
项目:ugali    作者:DarkEnergySurvey    | 项目源码 | 文件源码
def bayesianUpperLimit(self, alpha, steps=1.e5, plot=False):
        """
        Compute one-sided upper limit using Bayesian Method of Helene.
        Several methods of increasing numerical stability have been implemented.
        """
        x_dense, y_dense = self.densify()
        y_dense -= numpy.max(y_dense) # Numeric stability
        f = scipy.interpolate.interp1d(x_dense, y_dense, kind='linear')
        x = numpy.linspace(0., numpy.max(x_dense), steps)
        pdf = numpy.exp(f(x) / 2.)
        cut = (pdf / numpy.max(pdf)) > 1.e-10
        x = x[cut]
        pdf = pdf[cut]
        #pdf /= pdf[0]
        #forbidden = numpy.nonzero(pdf < 1.e-10)[0]
        #if len(forbidden) > 0:
        #    index = forbidden[0] # Numeric stability
        #    x = x[0: index]
        #    pdf = pdf[0: index]
        cdf = numpy.cumsum(pdf)
        cdf /= cdf[-1]
        cdf_reflect = scipy.interpolate.interp1d(cdf, x)

        #if plot:            
        #    pylab.figure()
        #    pylab.plot(x, f(x))
        #    pylab.scatter(self.x, self.y, c='red')
        #    
        #    pylab.figure()
        #    pylab.plot(x, pdf)
        #    
        #    pylab.figure()
        #    pylab.plot(cdf, x)

        return cdf_reflect(alpha)
项目:ugali    作者:DarkEnergySurvey    | 项目源码 | 文件源码
def confidenceInterval(self, alpha=0.6827, steps=1.e5, plot=False):
        """
        Compute two-sided confidence interval by taking x-values corresponding to the largest PDF-values first.
        """
        x_dense, y_dense = self.densify()
        y_dense -= numpy.max(y_dense) # Numeric stability
        f = scipy.interpolate.interp1d(x_dense, y_dense, kind='linear')
        x = numpy.linspace(0., numpy.max(x_dense), steps)
        # ADW: Why does this start at 0, which often outside the input range?
        # Wouldn't starting at xmin be better:
        #x = numpy.linspace(numpy.min(x_dense), numpy.max(x_dense), steps)
        pdf = numpy.exp(f(x) / 2.)
        cut = (pdf / numpy.max(pdf)) > 1.e-10
        x = x[cut]
        pdf = pdf[cut]

        sorted_pdf_indices = numpy.argsort(pdf)[::-1] # Indices of PDF in descending value
        cdf = numpy.cumsum(pdf[sorted_pdf_indices])
        cdf /= cdf[-1]
        sorted_pdf_index_max = numpy.argmin((cdf - alpha)**2)
        x_select = x[sorted_pdf_indices[0: sorted_pdf_index_max]]

        #if plot:
        #    cdf = numpy.cumsum(pdf)
        #    cdf /= cdf[-1]
        #    print cdf[numpy.max(sorted_pdf_indices[0: sorted_pdf_index_max])] \
        #          - cdf[numpy.min(sorted_pdf_indices[0: sorted_pdf_index_max])]
        #    
        #    pylab.figure()
        #    pylab.plot(x, f(x))
        #    pylab.scatter(self.x, self.y, c='red')
        #    
        #    pylab.figure()
        #    pylab.plot(x, pdf)

        return numpy.min(x_select), numpy.max(x_select) 

############################################################
项目:PyPeVoc    作者:goiosunsw    | 项目源码 | 文件源码
def plot_candidates(self):
        """Plot a representation of candidate periodicity

        Size gives the periodicity strength, color the order of preference
        """

        hues = np.arange(self.ncand)/float(self.ncand)
        hsv = np.swapaxes(np.atleast_3d([[hues,np.ones(len(hues)),np.ones(len(hues))]]),1,2)
        cols = hsv_to_rgb(hsv).squeeze()

        for per in self.periods:
            nc = len(per.cand_period)

            pl.scatter(per.time*np.ones(nc),per.cand_period,s=per.cand_strength*100,c=cols[0:nc],alpha=.5)
项目:unrolled-gan    作者:musyoku    | 项目源码 | 文件源码
def plot_scatter(data, dir=None, filename="scatter", color="blue"):
    if dir is None:
        raise Exception()
    try:
        os.mkdir(dir)
    except:
        pass
    fig = pylab.gcf()
    fig.set_size_inches(16.0, 16.0)
    pylab.clf()
    pylab.scatter(data[:, 0], data[:, 1], s=20, marker="o", edgecolors="none", color=color)
    pylab.xlim(-4, 4)
    pylab.ylim(-4, 4)
    pylab.savefig("{}/{}.png".format(dir, filename))
项目:unrolled-gan    作者:musyoku    | 项目源码 | 文件源码
def plot_scatter(data, dir=None, filename="scatter", color="blue"):
    if dir is None:
        raise Exception()
    try:
        os.mkdir(dir)
    except:
        pass
    fig = pylab.gcf()
    fig.set_size_inches(16.0, 16.0)
    pylab.clf()
    pylab.scatter(data[:, 0], data[:, 1], s=20, marker="o", edgecolors="none", color=color)
    pylab.xlim(-4, 4)
    pylab.ylim(-4, 4)
    pylab.savefig("{}/{}".format(dir, filename))
项目:LSGAN    作者:musyoku    | 项目源码 | 文件源码
def plot_scatter(data, dir=None, filename="scatter", color="blue"):
    if dir is None:
        raise Exception()
    try:
        os.mkdir(dir)
    except:
        pass
    fig = pylab.gcf()
    fig.set_size_inches(16.0, 16.0)
    pylab.clf()
    pylab.scatter(data[:, 0], data[:, 1], s=20, marker="o", edgecolors="none", color=color)
    pylab.xlim(-4, 4)
    pylab.ylim(-4, 4)
    pylab.savefig("{}/{}.png".format(dir, filename))
项目:LSGAN    作者:musyoku    | 项目源码 | 文件源码
def plot_scatter(data, dir=None, filename="scatter", color="blue"):
    if dir is None:
        raise Exception()
    try:
        os.mkdir(dir)
    except:
        pass
    fig = pylab.gcf()
    fig.set_size_inches(16.0, 16.0)
    pylab.clf()
    pylab.scatter(data[:, 0], data[:, 1], s=20, marker="o", edgecolors="none", color=color)
    pylab.xlim(-4, 4)
    pylab.ylim(-4, 4)
    pylab.savefig("{}/{}".format(dir, filename))
项目:variational-autoencoder    作者:musyoku    | 项目源码 | 文件源码
def visualize_z(z_batch, dir=None):
    if dir is None:
        raise Exception()
    try:
        os.mkdir(dir)
    except:
        pass
    fig = pylab.gcf()
    fig.set_size_inches(20.0, 16.0)
    pylab.clf()
    for n in xrange(z_batch.shape[0]):
        result = pylab.scatter(z_batch[n, 0], z_batch[n, 1], s=40, marker="o", edgecolors='none')
    pylab.xlabel("z1")
    pylab.ylabel("z2")
    pylab.savefig("%s/latent_code.png" % dir)
项目:livespin    作者:biocompibens    | 项目源码 | 文件源码
def draw2D(self):
        for i in xrange(self.nComponents):
            xeq = lambda t: self.params[6 * i + 3] * np.cos(t) * np.cos(self.params[6 * i + 5]) + self.params[
                                                                                                      6 * i + 4] * np.sin(
                t) * np.sin(self.params[6 * i + 5]) + self.params[6 * i + 1]
            yeq = lambda t: - self.params[6 * i + 3] * np.cos(t) * np.sin(self.params[6 * i + 5]) + self.params[
                                                                                                        6 * i + 4] * np.sin(
                t) * np.cos(self.params[6 * i + 5]) + self.params[6 * i + 2]
            t = np.linspace(0, 2 * np.pi, 100)
            x = xeq(t)
            y = yeq(t)
            pylab.scatter(self.params[6 * i + 2], self.params[6 * i + 1], color='k')
            pylab.plot(y.astype(int), x.astype(int), self.colors[i] + '-')
项目:livespin    作者:biocompibens    | 项目源码 | 文件源码
def plot_gaussians3D(self, save=False, titlehist='', pathfig='', newfig=True):

        ax = extract.hist2d(titlehist, newfig=newfig)
        dx, dy = np.indices(self.shape)
        for n in xrange(0, len(self.params), 6):
            gaussunitaire = GaussianForFit(self.image, 1, params=self.params[n:n + 6])
            ax.scatter(gaussunitaire.params[1], gaussunitaire.params[2],
                       self.image[gaussunitaire.params[1], gaussunitaire.params[2]], color=self.colors[n % 5],
                       label="{0:.3f}".format(gaussunitaire.params[0]), alpha=0.7)
            ax.contour(dx, dy, gaussunitaire.gaussian, colors=self.colors[n % 5])
        if save:
            pylab.savefig(pathfig)
项目:learning-to-prune    作者:timvieira    | 项目源码 | 文件源码
def patience(log, ax=None):
    ax = ax or pl.gca()
    maxes = running_max(list(log.iteration),
                        list(log.dev_accuracy - log.tradeoff * log.dev_runtime))
    ax.scatter(maxes[:,0], maxes[:,1], lw=0)
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def view_masks(file_name, t_start=0, t_stop=1, n_elec=0):

    params          = CircusParser(file_name)
    data_file       = params.get_data_file()
    data_file.open()
    N_e             = params.getint('data', 'N_e')
    N_t             = params.getint('detection', 'N_t')
    N_total         = params.nb_channels
    sampling_rate   = params.rate
    do_temporal_whitening = params.getboolean('whitening', 'temporal')
    do_spatial_whitening  = params.getboolean('whitening', 'spatial')
    spike_thresh     = params.getfloat('detection', 'spike_thresh')
    file_out_suff    = params.get('data', 'file_out_suff')
    nodes, edges     = get_nodes_and_edges(params)
    chunk_size       = (t_stop - t_start)*sampling_rate
    padding          = (t_start*sampling_rate, t_start*sampling_rate)
    inv_nodes        = numpy.zeros(N_total, dtype=numpy.int32)
    inv_nodes[nodes] = numpy.argsort(nodes)
    safety_time      = params.getint('clustering', 'safety_time')

    if do_spatial_whitening:
        spatial_whitening  = load_data(params, 'spatial_whitening')
    if do_temporal_whitening:
        temporal_whitening = load_data(params, 'temporal_whitening')

    thresholds       = load_data(params, 'thresholds')
    data = data_file.get_data(0, chunk_size, padding=padding, nodes=nodes)
    data_shape = len(data)
    data_file.close()
    peaks            = {}
    indices          = inv_nodes[edges[nodes[n_elec]]]

    if do_spatial_whitening:
        data = numpy.dot(data, spatial_whitening)
    if do_temporal_whitening: 
        data = scipy.ndimage.filters.convolve1d(data, temporal_whitening, axis=0, mode='constant')

    for i in xrange(N_e):
        peaks[i]   = algo.detect_peaks(data[:, i], thresholds[i], valley=True, mpd=0)


    pylab.figure()

    for count, i in enumerate(indices):

        pylab.plot(count*5 + data[:, i], '0.25')
        #xmin, xmax = pylab.xlim()
        pylab.scatter(peaks[i], count*5 + data[peaks[i], i], s=10, c='r')

    for count, i in enumerate(peaks[n_elec]):
        pylab.axvspan(i - safety_time, i + safety_time, facecolor='r', alpha=0.5)

    pylab.ylim(-5, len(indices)*5 )
    pylab.xlabel('Time [ms]')
    pylab.ylabel('Electrode')
    pylab.tight_layout()
    pylab.setp(pylab.gca(), yticks=[])
    pylab.show()
    return peaks
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def view_classification(data_1, data_2, title=None, save=None):

    fig    = pylab.figure()
    count  = 0
    panels = [0, 2, 1, 3]
    for item in [data_1, data_2]:
        clf, cld, X, X_raw, y = item
        for mode in ['predict', 'decision_function']:
            ax = fig.add_subplot(2, 2, panels[count]+1)

            if mode == 'predict':
                c    = clf
                vmax = 1.0
                vmin = 0.0
            elif mode == 'decision_function':
                c    = cld
                vmax = max(abs(numpy.amin(c)), abs(numpy.amax(c)))
                vmin = - vmax

            from circus.validating.utils import Projection
            p = Projection()
            _ = p.fit(X_raw, y)
            X_raw_ = p.transform(X_raw)
            # Plot figure.
            sc = ax.scatter(X_raw_[:, 0], X_raw_[:, 1], c=c, s=5, lw=0.1, cmap='bwr',
                            vmin=vmin, vmax=vmax)
            cb = fig.colorbar(sc)
            ax.grid(True)
            if panels[count] in [0, 1]:
                if panels[count] == 0:
                    ax.set_title('Classification Before')
                    ax.set_ylabel("2nd component")
                if panels[count] == 1:
                    ax.set_title('Classification After')
                    cb.set_label('Prediction')
            elif panels[count] in [2, 3]:
                ax.set_xlabel("1st component")
                if panels[count] == 2:
                    ax.set_ylabel("2nd component")
                if panels[count] == 3:
                    cb.set_label('Decision function')
            count += 1

    if save is None:
        pylab.show()
    else:
        pylab.savefig(save)
        pylab.close(fig)
    return
项目:ugali    作者:DarkEnergySurvey    | 项目源码 | 文件源码
def drawMembership(self, ax=None, radius=None, zidx=0, mc_source_id=1):
        if not ax: ax = plt.gca()
        import ugali.analysis.scan

        filename = self.config.mergefile
        logger.debug("Opening %s..."%filename)
        f = pyfits.open(filename)
        distance_modulus = f[2].data['DISTANCE_MODULUS'][zidx]

        for ii, name in enumerate(self.config.params['isochrone']['infiles']):
            logger.info('%s %s'%(ii, name))
            isochrone = ugali.isochrone.Isochrone(self.config, name)
            mag = isochrone.mag + distance_modulus
            ax.scatter(isochrone.color,mag, color='0.5', s=800, zorder=0)


        pix = ang2pix(self.nside, self.glon, self.glat)
        likelihood_pix = ugali.utils.skymap.superpixel(pix,self.nside,self.config.params['coords']['nside_likelihood'])
        config = self.config
        scan = ugali.analysis.scan.Scan(self.config,likelihood_pix)
        likelihood = scan.likelihood
        distance_modulus_array = [self.config.params['scan']['distance_modulus_array'][zidx]]
        likelihood.precomputeGridSearch(distance_modulus_array)
        likelihood.gridSearch()
        p = likelihood.membershipGridSearch()

        sep = ugali.utils.projector.angsep(self.glon, self.glat, likelihood.catalog.lon, likelihood.catalog.lat)
        radius = self.radius if radius is None else radius
        cut = (sep < radius)
        catalog = likelihood.catalog.applyCut(cut)
        p = p[cut]

        cut_mc_source_id = (catalog.mc_source_id == mc_source_id)
        ax.scatter(catalog.color[cut_mc_source_id], catalog.mag[cut_mc_source_id], c='gray', s=100, edgecolors='none')
        sc = ax.scatter(catalog.color, catalog.mag, c=p, edgecolors='none')

        ax.set_xlim(likelihood.roi.bins_color[0], likelihood.roi.bins_color[-1])
        ax.set_ylim(likelihood.roi.bins_mag[-1], likelihood.roi.bins_mag[0])
        ax.set_xlabel('Color (mag)')
        ax.set_ylabel('Magnitude (mag)')
        try: ax.cax.colorbar(sc)
        except: pylab.colorbar(sc)