Python pylab 模块,close() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用pylab.close()

项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def view_trigger_snippets_bis(trigger_snippets, elec_index, save=None):
    fig = pylab.figure()
    ax = fig.add_subplot(1, 1, 1)
    for n in xrange(0, trigger_snippets.shape[2]):
        y = trigger_snippets[:, elec_index, n]
        x = numpy.arange(- (y.size - 1) / 2, (y.size - 1) / 2 + 1)
        b = 0.5 + 0.5 * numpy.random.rand()
        ax.plot(x, y, color=(0.0, 0.0, b), linestyle='solid')
    ax.grid(True)
    ax.set_xlim([numpy.amin(x), numpy.amax(x)])
    ax.set_xlabel("time")
    ax.set_ylabel("amplitude")
    if save is None:
        pylab.show()
    else:
        pylab.savefig(save)
        pylab.close(fig)
    return
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def view_dataset(X, color='blue', title=None, save=None):
    n_components = 2
    pca = PCA(n_components)
    pca.fit(X)
    x = pca.transform(X)
    fig = pylab.figure()
    ax = fig.add_subplot(1, 1, 1)
    ax.scatter(x[:, 0], x[:, 1], c=color, s=5, lw=0.1)
    ax.grid(True)
    if title is None:
        ax.set_title("Dataset ({} samples)".format(X.shape[0]))
    else:
        ax.set_title(title + " ({} samples)".format(X.shape[0]))
    ax.set_xlabel("1st component")
    ax.set_ylabel("2nd component")
    if save is None:
        pylab.show()
    else:
        pylab.savefig(save)
        pylab.close(fig)
    return
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def view_loss_curve(losss, title=None, save=None):
    '''Plot loss curve'''
    x_min = 1
    x_max = len(losss) - 1
    fig = pylab.figure()
    ax = fig.gca()
    ax.semilogy(range(x_min, x_max + 1), losss[1:], color='blue', linestyle='solid')
    ax.grid(True, which='both')
    if title is None:
        ax.set_title("Loss curve")
    else:
        ax.set_title(title)
    ax.set_xlabel("iteration")
    ax.set_ylabel("loss")
    ax.set_xlim([x_min - 1, x_max + 1])
    if save is None:
        pylab.show()
    else:
        pylab.savefig(save)
        pylab.close(fig)
    return
项目:LinearCorex    作者:gregversteeg    | 项目源码 | 文件源码
def plot_convergence(history, prefix='', prefix2=''):
    plt.figure(figsize=(8, 5))
    ax = plt.subplot(111)

    ax.get_xaxis().tick_bottom()
    ax.get_yaxis().tick_left()

    plt.plot(history["TC"], '-', lw=2.5, color=tableau20[0])
    x = len(history["TC"])
    y = np.max(history["TC"])
    plt.text(0.5 * x, 0.8 * y, "TC", fontsize=18, fontweight='bold', color=tableau20[0])

    if history.has_key("additivity"):
        plt.plot(history["additivity"], '-', lw=2.5, color=tableau20[1])
        plt.text(0.5 * x, 0.3 * y, "additivity", fontsize=18, fontweight='bold', color=tableau20[1])

    plt.ylabel('TC', fontsize=12, fontweight='bold')
    plt.xlabel('# Iterations', fontsize=12, fontweight='bold')
    plt.suptitle('Convergence', fontsize=12)
    filename = '{}/summary/convergence{}.pdf'.format(prefix, prefix2)
    if not os.path.exists(os.path.dirname(filename)):
        os.makedirs(os.path.dirname(filename))
    plt.savefig(filename, bbox_inches="tight")
    plt.close('all')
    return True
项目:LinearCorex    作者:gregversteeg    | 项目源码 | 文件源码
def plot_heatmaps(data, mis, column_label, cont, topk=30, prefix=''):
    cmap = sns.cubehelix_palette(as_cmap=True, light=.9)
    m, nv = mis.shape
    for j in range(m):
        inds = np.argsort(- mis[j, :])[:topk]
        if len(inds) >= 2:
            plt.clf()
            order = np.argsort(cont[:,j])
            subdata = data[:, inds][order].T
            subdata -= np.nanmean(subdata, axis=1, keepdims=True)
            subdata /= np.nanstd(subdata, axis=1, keepdims=True)
            columns = [column_label[i] for i in inds]
            sns.heatmap(subdata, vmin=-3, vmax=3, cmap=cmap, yticklabels=columns, xticklabels=False, mask=np.isnan(subdata))
            filename = '{}/heatmaps/group_num={}.png'.format(prefix, j)
            if not os.path.exists(os.path.dirname(filename)):
                os.makedirs(os.path.dirname(filename))
            plt.title("Latent factor {}".format(j))
            plt.yticks(rotation=0)
            plt.savefig(filename, bbox_inches='tight')
            plt.close('all')
            #plot_rels(data[:, inds], map(lambda q: column_label[q], inds), colors=cont[:, j],
            #          outfile=prefix + '/relationships/group_num=' + str(j), latent=labels[:, j], alpha=0.1)
项目:keras    作者:GeekLiB    | 项目源码 | 文件源码
def on_epoch_end(self, epoch, logs={}):
        self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % epoch))
        self.show_edit_distance(256)
        word_batch = next(self.text_img_gen)[0]
        res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words])

        for i in range(self.num_display_words):
            pylab.subplot(self.num_display_words, 1, i + 1)
            if K.image_dim_ordering() == 'th':
                the_input = word_batch['the_input'][i, 0, :, :]
            else:
                the_input = word_batch['the_input'][i, :, :, 0]
            pylab.imshow(the_input, cmap='Greys_r')
            pylab.xlabel('Truth = \'%s\' Decoded = \'%s\'' % (word_batch['source_str'][i], res[i]))
        fig = pylab.gcf()
        fig.set_size_inches(10, 12)
        pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % epoch))
        pylab.close()

# Input Parameters
项目:bio_corex    作者:gregversteeg    | 项目源码 | 文件源码
def output_groups(tcs, alpha, mis, column_label, thresh=0, prefix=''):
    f = safe_open(prefix + '/text_files/groups.txt', 'w+')
    g = safe_open(prefix + '/text_files/groups_no_overlaps.txt', 'w+')
    m, nv = mis.shape
    for j in range(m):
        f.write('Group num: %d, TC(X;Y_j): %0.3f\n' % (j, tcs[j]))
        g.write('Group num: %d, TC(X;Y_j): %0.3f\n' % (j, tcs[j]))
        inds = np.where(alpha[j] * mis[j] > thresh)[0]
        inds = inds[np.argsort(-alpha[j, inds] * mis[j, inds])]
        for ind in inds:
            f.write(column_label[ind] + ', %0.3f, %0.3f, %0.3f\n' % (
                mis[j, ind], alpha[j, ind], mis[j, ind] * alpha[j, ind]))
        inds = np.where(alpha[j] == 1)[0]
        inds = inds[np.argsort(- mis[j, inds])]
        for ind in inds:
            g.write(column_label[ind] + ', %0.3f\n' % mis[j, ind])
    f.close()
    g.close()
项目:robot-dream    作者:research-team    | 项目源码 | 文件源码
def save(GUI):
    global txtResultPath
    if GUI:
        import pylab as pl
        import nest.raster_plot
        import nest.voltage_trace
        for key in spikedetectors:
            try:
                nest.raster_plot.from_device(spikedetectors[key], hist=True)
                pl.savefig(f_name_gen("", "spikes_" + key.lower()), dpi=dpi_n, format='png')
                pl.close()
            except Exception:
                print(" * * * from {0} is NOTHING".format(key))
    txtResultPath = 'txt/'
    logger.debug("Saving TEXT into {0}".format(txtResultPath))
    if not os.path.exists(txtResultPath):
        os.mkdir(txtResultPath)
    for key in spikedetectors:
        save_spikes(spikedetectors[key], name=key)
    with open(txtResultPath + 'timeSimulation.txt', 'w') as f:
        for item in times:
            f.write(item)
项目:ngas    作者:ICRAR    | 项目源码 | 文件源码
def sort_obsid_from_sqlite(sqlite_file):
    """
    """
    import sqlite3 as dbdrv
    obs_dict = defaultdict(int)
    query = "SELECT DISTINCT(obs_id) FROM ac WHERE offline > -1 ORDER BY obs_id"
    dbconn = dbdrv.connect(sqlite_file)
    cur = dbconn.cursor()
    cur.execute(query)
    all_obs = cur.fetchall() # not OK if we have millions of obs numbers
    cur.close()

    for c, obsid_row in enumerate(all_obs):
        obs_dict[obsid_row[0]] = c + 1

    return (obs_dict, all_obs[0][0], all_obs[-1][0])
项目:ngas    作者:ICRAR    | 项目源码 | 文件源码
def _get_epochs(self):
        import sqlite3 as dbdrv
        dbconn = dbdrv.connect(self._sqlite_file)
        q = "SELECT min(ts) from ac"
        cur = dbconn.cursor()
        cur.execute(q)
        dfirst_epoch = cur.fetchall()[0][0]
        cur.close()

        q = "SELECT max(ts) from ac"
        cur = dbconn.cursor()
        cur.execute(q)
        dlast_epoch = cur.fetchall()[0][0]
        cur.close()

        return (dfirst_epoch, dlast_epoch)
项目:ngas    作者:ICRAR    | 项目源码 | 文件源码
def pickleLoadACL(options):
    """
    Return the fapDict
    """
    if (os.path.exists(options.load_acl_file)):
        try:
            pkl_file = open(options.load_acl_file, 'rb')
            print 'Loading acl object from file %s' % options.load_acl_file
            acl = pickle.load(pkl_file)
            pkl_file.close()
            return acl
            if (acl == None):
                raise Exception("The acl object is None when reading from the file")
        except Exception, e:
            ex = str(e)
            print 'Fail to load the acl object from file %s' % options.load_acl_file
            raise e
    else:
        print 'Cannot locate the acl object file %s' % options.load_acl_file
        return None
项目:keras-customized    作者:ambrite    | 项目源码 | 文件源码
def on_epoch_end(self, epoch, logs={}):
        self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch)))
        self.show_edit_distance(256)
        word_batch = next(self.text_img_gen)[0]
        res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words])
        if word_batch['the_input'][0].shape[0] < 256:
            cols = 2
        else:
            cols = 1
        for i in range(self.num_display_words):
            pylab.subplot(self.num_display_words // cols, cols, i + 1)
            if K.image_dim_ordering() == 'th':
                the_input = word_batch['the_input'][i, 0, :, :]
            else:
                the_input = word_batch['the_input'][i, :, :, 0]
            pylab.imshow(the_input.T, cmap='Greys_r')
            pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i]))
        fig = pylab.gcf()
        fig.set_size_inches(10, 13)
        pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch)))
        pylab.close()
项目:keras-mxnet-benchmarks    作者:sandeep-krishnamurthy    | 项目源码 | 文件源码
def on_epoch_end(self, epoch, logs={}):
        self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch)))
        self.show_edit_distance(256)
        word_batch = next(self.text_img_gen)[0]
        res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words])
        if word_batch['the_input'][0].shape[0] < 256:
            cols = 2
        else:
            cols = 1
        for i in range(self.num_display_words):
            pylab.subplot(self.num_display_words // cols, cols, i + 1)
            if K.image_dim_ordering() == 'th':
                the_input = word_batch['the_input'][i, 0, :, :]
            else:
                the_input = word_batch['the_input'][i, :, :, 0]
            pylab.imshow(the_input.T, cmap='Greys_r')
            pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i]))
        fig = pylab.gcf()
        fig.set_size_inches(10, 13)
        pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch)))
        pylab.close()
项目:qudi    作者:Ulm-IQO    | 项目源码 | 文件源码
def visualize_bin_list(self, bin_list, path):
        """
        Will create a histogram of all bin_list entries and save it to the specified path
        """
        # TODO use savelogic here
        for jj, bin_entry in enumerate(bin_list):
            hist_x, hist_y = self._traceanalysis_logic.calculate_histogram(bin_entry, num_bins=50)
            pb.plot(hist_x[0:len(hist_y)], hist_y)
            fname = 'bin_' + str(jj) + '.png'
            savepath = os.path.join(path, fname)
            pb.savefig(savepath)
            pb.close()

    # =========================================================================
    #                           Connecting to GUI
    # =========================================================================

    # absolutely not working at the moment.
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def AddKlineLayer(self, kline):
        """"""
        if 0: kline = stock.Kline
        x =[]
        y = []
        k = 0
        for hisdat in kline.hisdats:
            if 0 : hisdat = stock.Hisdat
            x.append(k)
            y.append(hisdat.close)
            k += 1
        plt.plot(x,y,'b')

    #
    #
    #----------------------------------------------------------------------
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def AddCloses(self, closes, color='b', m=0, s=1):
        """"""
        x=[]
        i = 0
        ys=[]
        for close in closes:
            x.append(i)
            i += 1
            y = close*s
            y += m
            ys.append(y)
        plt.plot(x, ys, color)


    #
    #?????? 
    #a - [x, y, flag(buy/sell)]
    #----------------------------------------------------------------------
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def DrawDvs(pl, closes, curve, sign, dvs, pandl, sh, title, leag=None, lad=None ):
    pl.figure
    pl.subplot(311)
    pl.title("id:%s Sharpe ratio: %.2f"%(str(title),sh))
    pl.plot(closes)
    DrawLine(pl, sign, closes)
    pl.subplot(312)
    pl.grid()
    if dvs != None:
        pl.plot(dvs)
    if isinstance(curve, np.ndarray):
        DrawZZ(pl, curve, 'r')
    if leag != None:
        pl.plot(leag, 'r')
    if lad != None:
        pl.plot(lad, 'b')
    #pl.plot(stock.GuiYiHua(closes[:i])[60:])
    pl.subplot(313)
    pl.plot(sign)
    pl.plot(pandl)
    pl.show()
    pl.close()
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def DrawDvsAndZZ(pl, dvs, zz, closes=None):
    """dvs?zz??????; dvs : ????closes, """
    dvs = np.array(dvs)
    pl.figure
    if closes == None:
        pl.plot(dvs)
        pl.plot(zz[:,0], zz[:,1], 'r')
    else:
        pl.subplot(211)
        pl.plot(closes)
        pl.grid()
        pl.subplot(212)
        pl.grid()
        pl.plot(dvs)
        pl.plot(zz[:,0], zz[:,1], 'r')
    pl.show()
    pl.close()
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def getDayDatas(date_win, codes):
        date = help.MyDate(date_win[0])
        datas = np.zeros((len(codes)*5, (help.MyDate(date_win[1]).d-date.d).days))  
        for i, code in enumerate(codes):
            #print code
            guider = Guider(code)
            j = 0
            date = help.MyDate(date_win[0])
            while date.d < help.MyDate(date_win[1]).d:
                date.Next()
                #print date.echo()
                hisdat = guider.getDataFromDate(date.d)
                if not isinstance(hisdat, Hisdat) :
                    datas[i*5:i*5+5, j] = 0
                else:
                    #?????????????? ???????
                    datas[i*5:i*5+5, j] = np.array([hisdat.open,hisdat.high,hisdat.low,hisdat.close,hisdat.volume])
                j += 1
        return datas
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def DataToR():
        codes = simulator.ISimulator.getGupiaos(enum.all)
        s = ""
        i = 0
        l = []
        for code in codes:
            g = Guider(code, start_day='2012-3-1', end_day='2012-11-1')
            print(g.code, g.getSize())
            l.append(g.getSize())
            if g.getSize() > 100:
                g.hisdats = g.hisdats[-100:]
            if g.getSize() == 100:
                s += g.__DataToR()
            i += 1
            #if i == 600:
                #break

        #print max(l), min(l)
        f = open('C:\\chromium\\src\\autoxd3\\R\\stocka.txt','w')
        f.write(s)
        f.close()
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def GetLLV(self, type="close"):
        """"""
        a=[]
        for i in range(0, self.getSize()):
            if 0: hisdat = Hisdat
            hisdat = self.getData(i)
            cur = 0
            if type == "close":
                cur = hisdat.close
            if type == "high":
                cur = hisdat.high
            if type == "low":
                cur = hisdat.low
            if type == "open":
                cur = hisdat.open
            if type == "vol" or type == "volume" :
                cur = hisdat.volume
            a.append(cur)
        return min(a)

    #----------------------------------------------------------------------
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def XiangDuiQuJian(self):
        """????"""
        account = Account()
        for i in range(60, self.getSize(), 1):
            if 0: hisdat = Hisdat
            hisdat = self.getData(i)
            day = 60
            high = self.HHV("close", i, day)
            low = self.LLV("close", i, day)
            cur = hisdat.close
            v = (cur-low)/(high-low)
            if v > 0.9:
                account.sell(self.code, hisdat.close, -1, hisdat.date)
            if v < 0.1 :
                account.buy(self.code, hisdat.close, -1, hisdat.date)

            print(account.money)
        print(account.getMoney())
        self.myprint()
        account.printWeiTuo()
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def plot(self):
        #??????????????????
        pl.figure
        #?????
        a = []
        for h in self.weituo_historys:
            a.append(h.price)
        a = GuiYiHua(a)
        pl.plot(a, 'b')
        #???
        a = np.array(self.total_moneys)
        a = GuiYiHua(a)
        pl.plot(a, 'r')
        pl.legend(['price list', 'money list'])
        pl.show()
        pl.close()

    #???????????????, ??????????
项目:ugali    作者:DarkEnergySurvey    | 项目源码 | 文件源码
def getSDSSImage(ra,dec,radius=1.0,xsize=800,opt='GML',**kwargs):
    """
    Download Sloan Digital Sky Survey images
    http://skyserver.sdss3.org/dr9/en/tools/chart/chart.asp

    radius (degrees)
    opts: (G) Grid, (L) Label, P (PhotoObj), S (SpecObj), O (Outline), (B) Bounding Box, 
          (F) Fields, (M) Mask, (Q) Plates, (I) Invert
    """
    import subprocess
    import tempfile

    url="http://skyservice.pha.jhu.edu/DR10/ImgCutout/getjpeg.aspx?"
    scale = 2. * radius * 3600. / xsize
    params=dict(ra=ra,dec=dec,
                width=xsize,height=xsize,
                scale=scale,opt=opt)
    query='&'.join("%s=%s"%(k,v) for k,v in params.items())

    tmp = tempfile.NamedTemporaryFile(suffix='.jpeg')
    cmd='wget --progress=dot:mega -O %s "%s"'%(tmp.name,url+query)
    subprocess.call(cmd,shell=True)
    im = pylab.imread(tmp.name)
    tmp.close()
    return im
项目:ugali    作者:DarkEnergySurvey    | 项目源码 | 文件源码
def drawStellarDensity(self,ax=None):
        if not ax: ax = plt.gca()
        # Stellar Catalog
        self._create_catalog()
        catalog = self.catalog
        #catalog=ugali.observation.catalog.Catalog(self.config,roi=self.roi)
        pix = ang2pix(self.nside, catalog.lon, catalog.lat)
        counts = collections.Counter(pix)
        pixels, number = numpy.array(sorted(counts.items())).T
        star_map = healpy.UNSEEN * numpy.ones(healpy.nside2npix(self.nside))
        star_map[pixels] = number
        star_map = numpy.where(star_map == 0, healpy.UNSEEN, star_map)

        #im = healpy.gnomview(star_map,**self.gnom_kwargs)
        #healpy.graticule(dpar=1,dmer=1,color='0.5',verbose=False)
        #pylab.close()

        im = drawHealpixMap(star_map,self.glon,self.glat,self.radius,coord=self.coord)
        #im = ax.imshow(im,origin='bottom')
        try:    ax.cax.colorbar(im)
        except: pylab.colorbar(im,ax=ax)
        ax.annotate("Stars",**self.label_kwargs)
        return im
项目:ugali    作者:DarkEnergySurvey    | 项目源码 | 文件源码
def drawMask(self,ax=None, mask=None):
        if not ax: ax = plt.gca()
        # MAGLIM Mask
        if mask is None:
            filenames = self.config.getFilenames()
            catalog_pixels = self.roi.getCatalogPixels()
            mask_map = ugali.utils.skymap.readSparseHealpixMaps(filenames['mask_1'][catalog_pixels], field='MAGLIM')
        else:
            mask_map = healpy.UNSEEN*np.ones(healpy.nside2npix(self.config['coords']['nside_pixel']))
            mask_map[mask.roi.pixels] = mask.mask_1.mask_roi_sparse
        mask_map = numpy.where(mask_map == healpy.UNSEEN, 0, mask_map)

        #im = healpy.gnomview(mask_map,**self.gnom_kwargs)
        #healpy.graticule(dpar=1,dmer=1,color='0.5',verbose=False)
        #pylab.close()
        #im = ax.imshow(im,origin='bottom')

        im = drawHealpixMap(mask_map,self.glon,self.glat,self.radius,coord=self.coord)

        try: ax.cax.colorbar(im)
        except: pylab.colorbar(im)
        ax.annotate("Mask",**self.label_kwargs)
        return im
项目:keras    作者:NVIDIA    | 项目源码 | 文件源码
def on_epoch_end(self, epoch, logs={}):
        self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch)))
        self.show_edit_distance(256)
        word_batch = next(self.text_img_gen)[0]
        res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words])
        if word_batch['the_input'][0].shape[0] < 256:
            cols = 2
        else:
            cols = 1
        for i in range(self.num_display_words):
            pylab.subplot(self.num_display_words // cols, cols, i + 1)
            if K.image_dim_ordering() == 'th':
                the_input = word_batch['the_input'][i, 0, :, :]
            else:
                the_input = word_batch['the_input'][i, :, :, 0]
            pylab.imshow(the_input.T, cmap='Greys_r')
            pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i]))
        fig = pylab.gcf()
        fig.set_size_inches(10, 13)
        pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch)))
        pylab.close()
项目:keras-101    作者:burness    | 项目源码 | 文件源码
def on_epoch_end(self, epoch, logs={}):
        self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch)))
        self.show_edit_distance(256)
        word_batch = next(self.text_img_gen)[0]
        res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words])
        if word_batch['the_input'][0].shape[0] < 256:
            cols = 2
        else:
            cols = 1
        for i in range(self.num_display_words):
            pylab.subplot(self.num_display_words // cols, cols, i + 1)
            if K.image_dim_ordering() == 'th':
                the_input = word_batch['the_input'][i, 0, :, :]
            else:
                the_input = word_batch['the_input'][i, :, :, 0]
            pylab.imshow(the_input.T, cmap='Greys_r')
            pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i]))
        fig = pylab.gcf()
        fig.set_size_inches(10, 13)
        pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch)))
        pylab.close()
项目:livespin    作者:biocompibens    | 项目源码 | 文件源码
def removeIllumination2(self, size, title = ''):
        out = ndimage.filters.gaussian_filter(self.image, size)
        pylab.figure()
        pylab.subplot(2,2,1)
        pylab.axis('off')
        pylab.imshow(self.image)
        pylab.subplot(2,2,2)
        pylab.axis('off')
        pylab.imshow(out)
        pylab.subplot(2,2,3)
        pylab.axis('off')
        pylab.imshow(self.image - out)
        pylab.subplot(2,2,4)
        pylab.axis('off')
        pylab.imshow(self.smooth - out)
        if title != '':
            pylab.savefig(title)
            pylab.close()
        else:
            pylab.show()
        self.smooth -= out
        return self.image - out
项目:livespin    作者:biocompibens    | 项目源码 | 文件源码
def plot(self, outpath=''):
        pylab.figure(figsize = (17,10))
        diff = self.f2-self.f3
        pylab.subplot(2,1,1)
        pylab.plot(range(self.lengthSeq), self.f2, 'r-', label = "f2")
        pylab.plot(range(self.lengthSeq), self.f3, 'g-', label = "f3")
        pylab.xlim([0., self.lengthSeq])
        pylab.tick_params(axis='both', which='major', labelsize=25)
        pylab.subplot(2,1,2)

        diff2 = diff/self.f3
        diff2 /= np.max(diff2)
        pylab.plot(range(self.lengthSeq), diff2, 'b-', label = "Rescaled (by max) difference / f3")
        pylab.xlabel("Temps (en images)", fontsize = 25)
        pylab.tick_params(axis='both', which='major', labelsize=25)
        pylab.xlim([0., self.lengthSeq])
        #pylab.legend(loc= 2, prop = {'size':15})
        pylab.savefig(outpath)
        pylab.close()
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def view_waveforms_clusters(data, halo, threshold, templates, amps_lim, n_curves=200, save=False):

    nb_templates = templates.shape[1]
    n_panels     = numpy.ceil(numpy.sqrt(nb_templates))
    mask         = numpy.where(halo > -1)[0]
    clust_idx    = numpy.unique(halo[mask])
    fig          = pylab.figure()    
    square       = True
    center       = len(data[0] - 1)//2
    for count, i in enumerate(xrange(nb_templates)):
        if square:
            pylab.subplot(n_panels, n_panels, count + 1)
            if (numpy.mod(count, n_panels) != 0):
                pylab.setp(pylab.gca(), yticks=[])
            if (count < n_panels*(n_panels - 1)):
                pylab.setp(pylab.gca(), xticks=[])

        subcurves = numpy.where(halo == clust_idx[count])[0]
        for k in numpy.random.permutation(subcurves)[:n_curves]:
            pylab.plot(data[k], '0.5')

        pylab.plot(templates[:, count], 'r')        
        pylab.plot(amps_lim[count][0]*templates[:, count], 'b', alpha=0.5)
        pylab.plot(amps_lim[count][1]*templates[:, count], 'b', alpha=0.5)

        xmin, xmax = pylab.xlim()
        pylab.plot([xmin, xmax], [-threshold, -threshold], 'k--')
        pylab.plot([xmin, xmax], [threshold, threshold], 'k--')
        #pylab.ylim(-1.5*threshold, 1.5*threshold)
        ymin, ymax = pylab.ylim()
        pylab.plot([center, center], [ymin, ymax], 'k--')
        pylab.title('Cluster %d' %i)

    if nb_templates > 0:
        pylab.tight_layout()
    if save:
        pylab.savefig(os.path.join(save[0], 'waveforms_%s' %save[1]))
        pylab.close()
    else:
        pylab.show()
    del fig
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def view_artefact(data, save=False):

    fig          = pylab.figure()    
    pylab.plot(data.T)
    if save:
        pylab.savefig(os.path.join(save[0], 'artefact_%s' %save[1]))
        pylab.close()
    else:
        pylab.show()
    del fig
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def view_trigger_snippets(trigger_snippets, chans, save=None):
    # Create output directory if necessary.
    if os.path.exists(save):
        for f in os.listdir(save):
            p = os.path.join(save, f)
            os.remove(p)
        os.removedirs(save)
    os.makedirs(save)
    # Plot figures.
    fig = pylab.figure()
    for (c, chan) in enumerate(chans):
        ax = fig.add_subplot(1, 1, 1)
        for n in xrange(0, trigger_snippets.shape[2]):
            y = trigger_snippets[:, c, n]
            x = numpy.arange(- (y.size - 1) / 2, (y.size - 1) / 2 + 1)
            b = 0.5 + 0.5 * numpy.random.rand()
            ax.plot(x, y, color=(0.0, 0.0, b), linestyle='solid')
        y = numpy.mean(trigger_snippets[:, c, :], axis=1)
        x = numpy.arange(- (y.size - 1) / 2, (y.size - 1) / 2 + 1)
        ax.plot(x, y, color=(1.0, 0.0, 0.0), linestyle='solid')
        ax.grid(True)
        ax.set_xlim([numpy.amin(x), numpy.amax(x)])
        ax.set_title("Channel %d" %chan)
        ax.set_xlabel("time")
        ax.set_ylabel("amplitude")
        if save is not None:
            # Save plot.
            filename = "channel-%d.png" %chan
            path = os.path.join(save, filename)
            pylab.savefig(path)
        fig.clf()
    if save is None:
        pylab.show()
    else:
        pylab.close(fig)
    return
项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def view_mahalanobis_distribution(data_1, data_2, save=None):
    '''Plot Mahalanobis distribution Before and After'''
    fig = pylab.figure()
    ax = fig.add_subplot(1,2,1)
    if len(data_1) == 3:
        d_gt, d_ngt, d_noi = data_1
    elif len(data_1) == 2:
        d_gt, d_ngt = data_1
    if len(data_1) == 3:
        ax.hist(d_noi, bins=50, color='k', alpha=0.5, label="Noise")
    ax.hist(d_ngt, bins=50, color='b', alpha=0.5, label="Non GT")
    ax.hist(d_gt, bins=75, color='r', alpha=0.5, label="GT")
    ax.grid(True)
    ax.set_title("Before")
    ax.set_ylabel("")
    ax.set_xlabel('# Samples')
    ax.set_xlabel('Distances')

    if len(data_2) == 3:
        d_gt, d_ngt, d_noi = data_2
    elif len(data_2) == 2:
        d_gt, d_ngt = data_2
    ax = fig.add_subplot(1,2,2)
    if len(data_2) == 3:
        ax.hist(d_noi, bins=50, color='k', alpha=0.5, label="Noise")
    ax.hist(d_ngt, bins=50, color='b', alpha=0.5, label="Non GT")
    ax.hist(d_gt, bins=75, color='r', alpha=0.5, label="GT")
    ax.grid(True)
    ax.set_title("After")
    ax.set_ylabel("")
    ax.set_xlabel('Distances')


    ax.legend()
    if save is None:
        pylab.show()
    else:
        pylab.savefig(save)
        pylab.close(fig)
    return
项目:privcount    作者:privcount    | 项目源码 | 文件源码
def plot_bar_chart(page, datasets, dataset_labels, dataset_colors, x_group_labels, err=0, title=None, xlabel='Bins', ylabel='Counts'):
    assert len(datasets) == len(dataset_colors) == len(dataset_labels)
    for dataset in datasets:
        assert len(dataset) == len(datasets[0])
        assert len(dataset) == len(x_group_labels)

    num_x_groups = len(datasets[0])
    x_group_locations = pylab.arange(num_x_groups)
    width = 1.0 / float(len(datasets)+1)

    figure = pylab.figure()
    axis = figure.add_subplot(111)
    bars = []

    for i in xrange(len(datasets)):
        bar = axis.bar(x_group_locations + (width*i), datasets[i], width, yerr=err, color=dataset_colors[i], error_kw=dict(ecolor='pink', lw=3, capsize=6, capthick=3))
        bars.append(bar)

    if title is not None:
        axis.set_title(title)
    if ylabel is not None:
        axis.set_ylabel(ylabel)
    if xlabel is not None:
        axis.set_xlabel(xlabel)

    axis.set_xticks(x_group_locations + width*len(datasets)/2)
    x_tick_names = axis.set_xticklabels(x_group_labels)
    rot = 0 if num_x_groups == 1 else 15
    pylab.setp(x_tick_names, rotation=rot, fontsize=10)
    axis.set_xlim(-width, num_x_groups)
    y_tick_names = axis.get_yticklabels()
    pylab.setp(y_tick_names, rotation=0, fontsize=10)

    axis.legend([bar[0] for bar in bars], dataset_labels)
    page.savefig()
    pylab.close()
项目:LinearCorex    作者:gregversteeg    | 项目源码 | 文件源码
def output_groups(ws, moments, alpha, mis, column_label, thresh=0, prefix=''):
    tc = moments["TC"]
    tcs = moments["TCs"]
    add = moments["additivity"]
    dual = (moments['X_i Y_j'] * moments['X_i Z_j']).T
    f = safe_open(prefix + '/summary/groups.txt', 'w+')
    g = safe_open(prefix + '/summary/groups_no_overlaps.txt', 'w+')
    h = safe_open(prefix + '/summary/summary.txt', 'w+')
    h.write('Group, TC\n')
    m, nv = mis.shape
    f.write('variable, weight, MI\n')
    g.write('variable, weight, MI\n')
    for j in range(m):
        f.write('Group num: %d, TC(X;Y_j): %0.6f\n' % (j, tcs[j]))
        g.write('Group num: %d, TC(X;Y_j): %0.6f\n' % (j, tcs[j]))
        h.write('%d, %0.6f\n' % (j, tcs[j]))

        inds = np.where(alpha[j] > 0)[0]
        inds = inds[np.argsort(-np.abs(ws)[j][inds])]
        for ind in inds:
            f.write(column_label[ind] + ', {:.3f}, {:.3f}\n'.format(ws[j][ind], mis[j][ind]))
        inds = np.where(np.argmax(np.abs(ws), axis=0) == j)[0]
        inds = inds[np.argsort(-np.abs(ws)[j][inds])]
        for ind in inds:
            g.write(column_label[ind] + ', {:.3f}, {:.3f}\n'.format(ws[j][ind], mis[j][ind]))
    h.write('Total: {:f}\n'.format(np.sum(tcs)))
    h.write('The total of individual TCs should approximately equal the objective: {:f}\n'.format(tc))
    h.write('If not, this signals redundancy/synergy in the final solution (measured by additivity: {:f}'.format(add))
    f.close()
    g.close()
    h.close()
项目:LinearCorex    作者:gregversteeg    | 项目源码 | 文件源码
def output_labels(labels, row_label, prefix=''):
    f = safe_open(prefix + '/summary/labels.txt', 'w+')
    ns, m = labels.shape
    for l in range(ns):
        f.write(row_label[l] + ',' + ','.join(map(str, labels[l, :])) + '\n')
    f.close()
项目:pCVR    作者:xjtushilei    | 项目源码 | 文件源码
def on_epoch_end(self, epoch, logs={}):
        self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch)))
        self.show_edit_distance(256)
        word_batch = next(self.text_img_gen)[0]
        res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words])
        if word_batch['the_input'][0].shape[0] < 256:
            cols = 2
        else:
            cols = 1
        for i in range(self.num_display_words):
            pylab.subplot(self.num_display_words // cols, cols, i + 1)
            if K.image_data_format() == 'channels_first':
                the_input = word_batch['the_input'][i, 0, :, :]
            else:
                the_input = word_batch['the_input'][i, :, :, 0]
            pylab.imshow(the_input.T, cmap='Greys_r')
            pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i]))
        fig = pylab.gcf()
        fig.set_size_inches(10, 13)
        pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch)))
        pylab.close()
项目:bio_corex    作者:gregversteeg    | 项目源码 | 文件源码
def plot_heatmaps(data, labels, alpha, mis, column_label, cont, topk=20, prefix='', focus=''):
    cmap = sns.cubehelix_palette(as_cmap=True, light=.9)
    m, nv = mis.shape
    for j in range(m):
        inds = np.where(np.logical_and(alpha[j] > 0, mis[j] > 0.))[0]
        inds = inds[np.argsort(- alpha[j, inds] * mis[j, inds])][:topk]
        if focus in column_label:
            ifocus = column_label.index(focus)
            if not ifocus in inds:
                inds = np.insert(inds, 0, ifocus)
        if len(inds) >= 2:
            plt.clf()
            order = np.argsort(cont[:,j])
            subdata = data[:, inds][order].T
            subdata -= np.nanmean(subdata, axis=1, keepdims=True)
            subdata /= np.nanstd(subdata, axis=1, keepdims=True)
            columns = [column_label[i] for i in inds]
            sns.heatmap(subdata, vmin=-3, vmax=3, cmap=cmap, yticklabels=columns, xticklabels=False, mask=np.isnan(subdata))
            filename = '{}/heatmaps/group_num={}.png'.format(prefix, j)
            if not os.path.exists(os.path.dirname(filename)):
                os.makedirs(os.path.dirname(filename))
            plt.title("Latent factor {}".format(j))
            plt.savefig(filename, bbox_inches='tight')
            plt.close('all')
            #plot_rels(data[:, inds], list(map(lambda q: column_label[q], inds)), colors=cont[:, j],
            #          outfile=prefix + '/relationships/group_num=' + str(j), latent=labels[:, j], alpha=0.1)
项目:bio_corex    作者:gregversteeg    | 项目源码 | 文件源码
def plot_pairplots(data, labels, alpha, mis, column_label, topk=5, prefix='', focus=''):
    cmap = sns.cubehelix_palette(as_cmap=True, light=.9)
    plt.rcParams.update({'font.size': 32})
    m, nv = mis.shape
    for j in range(m):
        inds = np.where(np.logical_and(alpha[j] > 0, mis[j] > 0.))[0]
        inds = inds[np.argsort(- alpha[j, inds] * mis[j, inds])][:topk]
        if focus in column_label:
            ifocus = column_label.index(focus)
            if not ifocus in inds:
                inds = np.insert(inds, 0, ifocus)
        if len(inds) >= 2:
            plt.clf()
            subdata = data[:, inds]
            columns = [column_label[i] for i in inds]
            subdata = pd.DataFrame(data=subdata, columns=columns)

            try:
                sns.pairplot(subdata, kind="reg", diag_kind="kde", size=5, dropna=True)
                filename = '{}/pairplots_regress/group_num={}.pdf'.format(prefix, j)
                if not os.path.exists(os.path.dirname(filename)):
                    os.makedirs(os.path.dirname(filename))
                plt.suptitle("Latent factor {}".format(j), y=1.01)
                plt.savefig(filename, bbox_inches='tight')
                plt.clf()
            except:
                pass

            subdata['Latent factor'] = labels[:,j]
            try:
                sns.pairplot(subdata, kind="scatter", dropna=True, vars=subdata.columns.drop('Latent factor'), hue="Latent factor", diag_kind="kde", size=5)
                filename = '{}/pairplots/group_num={}.pdf'.format(prefix, j)
                if not os.path.exists(os.path.dirname(filename)):
                    os.makedirs(os.path.dirname(filename))
                plt.suptitle("Latent factor {}".format(j), y=1.01)
                plt.savefig(filename, bbox_inches='tight')
                plt.close('all')
            except:
                pass
项目:bio_corex    作者:gregversteeg    | 项目源码 | 文件源码
def output_labels(labels, row_label, prefix=''):
    f = safe_open(prefix + '/text_files/labels.txt', 'w+')
    ns, m = labels.shape
    for l in range(ns):
        f.write(row_label[l] + ',' + ','.join(map(str, labels[l, :])) + '\n')
    f.close()
项目:bio_corex    作者:gregversteeg    | 项目源码 | 文件源码
def output_strong(tcs, alpha, mis, labels, prefix=''):
    f = safe_open(prefix + '/text_files/most_deterministic_groups.txt', 'w+')
    m, n = alpha.shape
    topk = 5
    ixy = np.clip(np.sum(alpha * mis, axis=1) - tcs, 0, np.inf)
    hys = np.array([entropy(labels[:, j]) for j in range(m)]).clip(1e-6)
    ntcs = [(np.sum(np.sort(alpha[j] * mis[j])[-topk:]) - ixy[j]) / ((topk - 1) * hys[j]) for j in range(m)]

    f.write('Group num., NTC\n')
    for j, ntc in sorted(enumerate(ntcs), key=lambda q: -q[1]):
        f.write('%d, %0.3f\n' % (j, ntc))
    f.close()
项目:bio_corex    作者:gregversteeg    | 项目源码 | 文件源码
def anomalies(log_z, row_label=None, prefix=''):
    from scipy.special import erf

    ns = log_z.shape[1]
    if row_label is None:
        row_label = list(map(str, range(ns)))
    a_score = np.sum(log_z[:, :, 0], axis=0)
    mean, std = np.mean(a_score), np.std(a_score)
    a_score = (a_score - mean) / std
    percentile = 1. / ns
    anomalies = np.where(0.5 * (1 - erf(a_score / np.sqrt(2)) ) < percentile)[0]
    f = safe_open(prefix + '/text_files/anomalies.txt', 'w+')
    for i in anomalies:
        f.write(row_label[i] + ', %0.1f\n' % a_score[i])
    f.close()
项目:bio_corex    作者:gregversteeg    | 项目源码 | 文件源码
def plot_convergence(tc_history, prefix='', prefix2=''):
    pylab.plot(tc_history)
    pylab.xlabel('# iterations')
    filename = '{}/text_files/convergence{}.pdf'.format(prefix, prefix2)
    if not os.path.exists(os.path.dirname(filename)):
        os.makedirs(os.path.dirname(filename))
    pylab.savefig(filename)
    pylab.close('all')
    return True
项目:svm-street-detector    作者:morris-frank    | 项目源码 | 文件源码
def saveBEVImageWithAxes(data, outputname, cmap = None, xlabel = 'x [m]', ylabel = 'z [m]', rangeX = [-10, 10], rangeXpx = None, numDeltaX = 5, rangeZ = [7, 62], rangeZpx = None, numDeltaZ = 5, fontSize = 16):
    '''

    :param data:
    :param outputname:
    :param cmap:
    '''
    aspect_ratio = float(data.shape[1])/data.shape[0]
    fig = pylab.figure()
    Scale = 8
    # add +1 to get axis text
    fig.set_size_inches(Scale*aspect_ratio+1,Scale*1)
    ax = pylab.gca()
    #ax.set_axis_off()
    #fig.add_axes(ax)
    if cmap != None:
        pylab.set_cmap(cmap)

    #ax.imshow(data, interpolation='nearest', aspect = 'normal')
    ax.imshow(data, interpolation='nearest')

    if rangeXpx == None:
        rangeXpx = (0, data.shape[1])

    if rangeZpx == None:
        rangeZpx = (0, data.shape[0])

    modBev_plot(ax, rangeX, rangeXpx, numDeltaX, rangeZ, rangeZpx, numDeltaZ, fontSize, xlabel = xlabel, ylabel = ylabel)
    #plt.savefig(outputname, bbox_inches='tight', dpi = dpi)
    pylab.savefig(outputname, dpi = data.shape[0]/Scale)
    pylab.close()
    fig.clear()
项目:ARES    作者:junjieqian    | 项目源码 | 文件源码
def getPageSize():
  import resource
  f = open("/proc/meminfo")
  mem = f.readline()
  f.close()
  return resource.getpagesize() / (1024 * float(mem[10:-3].strip()))
项目:robot-dream    作者:research-team    | 项目源码 | 文件源码
def save(GUI):
    global txtResultPath
    if GUI:
        import pylab as pl
        import nest.raster_plot
        import nest.voltage_trace
        logger.debug("Saving IMAGES into {0}".format(SAVE_PATH))
        for key in spike_detectors:
            try:
                nest.raster_plot.from_device(spike_detectors[key], hist=True)
                pl.savefig("spikes_" + str(key) +".png", dpi=dpi_n, format='png')
                pl.close()
            except Exception:
                print("From spikes {0} is NOTHING".format(key))
        for key in multimeters:
            try:
                nest.voltage_trace.from_device(multimeters[key])
                pl.savefig("volt_" + str(key) +".png", dpi=dpi_n, format='png')
                pl.close()
            except Exception:
                print("From MM {0} is NOTHING".format(key))

    txtResultPath = SAVE_PATH + 'txt/'
    logger.debug("Saving TEXT into {0}".format(txtResultPath))
    if not os.path.exists(txtResultPath):
        os.mkdir(txtResultPath)
    for key in spike_detectors:
        save_spikes(spike_detectors[key], name=key)
    with open(txtResultPath + 'timeSimulation.txt', 'w') as f:
        for item in times:
            f.write(item)
项目:VOCSeg    作者:lxh-123    | 项目源码 | 文件源码
def saveBEVImageWithAxes(data, outputname, cmap = None, xlabel = 'x [m]', ylabel = 'z [m]', rangeX = [-10, 10], rangeXpx = None, numDeltaX = 5, rangeZ = [7, 62], rangeZpx = None, numDeltaZ = 5, fontSize = 16):
    '''

    :param data:
    :param outputname:
    :param cmap:
    '''
    aspect_ratio = float(data.shape[1])/data.shape[0]
    fig = pylab.figure()
    Scale = 8
    # add +1 to get axis text
    fig.set_size_inches(Scale*aspect_ratio+1,Scale*1)
    ax = pylab.gca()
    #ax.set_axis_off()
    #fig.add_axes(ax)
    if cmap != None:
        pylab.set_cmap(cmap)

    #ax.imshow(data, interpolation='nearest', aspect = 'normal')
    ax.imshow(data, interpolation='nearest')

    if rangeXpx == None:
        rangeXpx = (0, data.shape[1])

    if rangeZpx == None:
        rangeZpx = (0, data.shape[0])

    modBev_plot(ax, rangeX, rangeXpx, numDeltaX, rangeZ, rangeZpx, numDeltaZ, fontSize, xlabel = xlabel, ylabel = ylabel)
    #plt.savefig(outputname, bbox_inches='tight', dpi = dpi)
    pylab.savefig(outputname, dpi = data.shape[0]/Scale)
    pylab.close()
    fig.clear()
项目:VOCSeg    作者:lxh-123    | 项目源码 | 文件源码
def saveBEVImageWithAxes(data, outputname, cmap = None, xlabel = 'x [m]', ylabel = 'z [m]', rangeX = [-10, 10], rangeXpx = None, numDeltaX = 5, rangeZ = [7, 62], rangeZpx = None, numDeltaZ = 5, fontSize = 16):
    '''

    :param data:
    :param outputname:
    :param cmap:
    '''
    aspect_ratio = float(data.shape[1])/data.shape[0]
    fig = pylab.figure()
    Scale = 8
    # add +1 to get axis text
    fig.set_size_inches(Scale*aspect_ratio+1,Scale*1)
    ax = pylab.gca()
    #ax.set_axis_off()
    #fig.add_axes(ax)
    if cmap != None:
        pylab.set_cmap(cmap)

    #ax.imshow(data, interpolation='nearest', aspect = 'normal')
    ax.imshow(data, interpolation='nearest')

    if rangeXpx == None:
        rangeXpx = (0, data.shape[1])

    if rangeZpx == None:
        rangeZpx = (0, data.shape[0])

    modBev_plot(ax, rangeX, rangeXpx, numDeltaX, rangeZ, rangeZpx, numDeltaZ, fontSize, xlabel = xlabel, ylabel = ylabel)
    #plt.savefig(outputname, bbox_inches='tight', dpi = dpi)
    pylab.savefig(outputname, dpi = data.shape[0]/Scale)
    pylab.close()
    fig.clear()
项目:HousePrices    作者:MizioAnd    | 项目源码 | 文件源码
def multipage(filename, figs=None):
        pp = PdfPages(filename)
        if figs is None:
            figs = [plt.figure(n) for n in plt.get_fignums()]
        for fig in figs:
            fig.savefig(pp, format='pdf')
        pp.close()