Python pylab 模块,grid() 实例源码

我们从Python开源项目中,提取了以下46个代码示例,用于说明如何使用pylab.grid()

项目:audio_scripts    作者:audiofilter    | 项目源码 | 文件源码
def display_wav(filename):
    input_data = read(filename)
    audio_in = input_data[1]
    samples = len(audio_in)
    fig = pylab.figure();
    print samples/44100.0," seconds"
    k = 0
    plot_data_out = []
    for i in xrange(samples):
        plot_data_out.append(audio_in[k]/32768.0)
        k = k+1
    pdata = numpy.array(plot_data_out, dtype=numpy.float)
    pylab.plot(pdata)
    pylab.grid(True)
    pylab.ion()
    pylab.show()
项目:sequana    作者:sequana    | 项目源码 | 文件源码
def plot(self, fontsize=16):
        """Create the barplot from the stats file"""
        from sequana.lazy import pylab
        from sequana.lazy import pandas as pd
        pylab.clf()
        df = pd.DataFrame(self._parse_data()['rules'])
        ts = df.ix['mean-runtime']
        total_time = df.ix['mean-runtime'].sum()
        #ts['total'] = self._parse_data()['total_runtime'] / float(self.N)
        ts['total'] = total_time
        ts.sort_values(inplace=True)

        ts.plot.barh(fontsize=fontsize)
        pylab.grid(True)
        pylab.xlabel("Seconds (s)", fontsize=fontsize)
        try:
            pylab.tight_layout()
        except:
            pass
项目:facade-segmentation    作者:jfemiani    | 项目源码 | 文件源码
def plot_rectified(self):
        import pylab
        pylab.title('rectified')
        pylab.imshow(self.rectified)

        for line in self.vlines:
            p0, p1 = line
            p0 = self.inv_transform(p0)
            p1 = self.inv_transform(p1)
            pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='green')

        for line in self.hlines:
            p0, p1 = line
            p0 = self.inv_transform(p0)
            p1 = self.inv_transform(p1)
            pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='red')

        pylab.axis('image');
        pylab.grid(c='yellow', lw=1)
        pylab.plt.yticks(np.arange(0, self.l, 100.0));
        pylab.xlim(0, self.w)
        pylab.ylim(self.l, 0)
项目:facade-segmentation    作者:jfemiani    | 项目源码 | 文件源码
def plot_original(self):
        import pylab
        pylab.title('original')
        pylab.imshow(self.data)

        for line in self.lines:
            p0, p1 = line
            pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='blue', alpha=0.3)

        for line in self.vlines:
            p0, p1 = line
            pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='green')

        for line in self.hlines:
            p0, p1 = line
            pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='red')

        pylab.axis('image');
        pylab.grid(c='yellow', lw=1)
        pylab.plt.yticks(np.arange(0, self.l, 100.0));
        pylab.xlim(0, self.w)
        pylab.ylim(self.l, 0)
项目:CAAPR    作者:Stargrazer82301    | 项目源码 | 文件源码
def plotPopScore(population, fitness=False):
   """ Plot the population score distribution

   Example:
      >>> Interaction.plotPopScore(population)

   :param population: population object (:class:`GPopulation.GPopulation`)
   :param fitness: if True, the fitness score will be used, otherwise, the raw.
   :rtype: None

   """
   score_list = getPopScores(population, fitness)
   pylab.plot(score_list, 'o')
   pylab.title("Plot of population score distribution")
   pylab.xlabel('Individual')
   pylab.ylabel('Score')
   pylab.grid(True)
   pylab.show()

# -----------------------------------------------------------------
项目:CAAPR    作者:Stargrazer82301    | 项目源码 | 文件源码
def plotHistPopScore(population, fitness=False):
   """ Population score distribution histogram

   Example:
      >>> Interaction.plotHistPopScore(population)

   :param population: population object (:class:`GPopulation.GPopulation`)
   :param fitness: if True, the fitness score will be used, otherwise, the raw.
   :rtype: None

   """
   score_list = getPopScores(population, fitness)
   n, bins, patches = pylab.hist(score_list, 50, facecolor='green', alpha=0.75, normed=1)
   pylab.plot(bins, pylab.normpdf(bins, numpy.mean(score_list), numpy.std(score_list)), 'r--')
   pylab.xlabel('Score')
   pylab.ylabel('Frequency')
   pylab.grid(True)
   pylab.title("Plot of population score distribution")
   pylab.show()

# -----------------------------------------------------------------
项目:CAAPR    作者:Stargrazer82301    | 项目源码 | 文件源码
def plotPopScore(population, fitness=False):
   """ Plot the population score distribution

   Example:
      >>> Interaction.plotPopScore(population)

   :param population: population object (:class:`GPopulation.GPopulation`)
   :param fitness: if True, the fitness score will be used, otherwise, the raw.
   :rtype: None

   """
   score_list = getPopScores(population, fitness)
   pylab.plot(score_list, 'o')
   pylab.title("Plot of population score distribution")
   pylab.xlabel('Individual')
   pylab.ylabel('Score')
   pylab.grid(True)
   pylab.show()

# -----------------------------------------------------------------
项目:CAAPR    作者:Stargrazer82301    | 项目源码 | 文件源码
def plotHistPopScore(population, fitness=False):
   """ Population score distribution histogram

   Example:
      >>> Interaction.plotHistPopScore(population)

   :param population: population object (:class:`GPopulation.GPopulation`)
   :param fitness: if True, the fitness score will be used, otherwise, the raw.
   :rtype: None

   """
   score_list = getPopScores(population, fitness)
   n, bins, patches = pylab.hist(score_list, 50, facecolor='green', alpha=0.75, normed=1)
   pylab.plot(bins, pylab.normpdf(bins, numpy.mean(score_list), numpy.std(score_list)), 'r--')
   pylab.xlabel('Score')
   pylab.ylabel('Frequency')
   pylab.grid(True)
   pylab.title("Plot of population score distribution")
   pylab.show()

# -----------------------------------------------------------------
项目:GLaDOS2    作者:TheComet    | 项目源码 | 文件源码
def plot_word_frequencies(freq, user):
        samples = [item for item, _ in freq.most_common(50)]

        freqs = np.array([float(freq[sample]) for sample in samples])
        freqs /= np.max(freqs)

        ylabel = "Normalized word count"

        pylab.grid(True, color="silver")
        kwargs = dict()
        kwargs["linewidth"] = 2
        kwargs["label"] = user
        pylab.plot(freqs, **kwargs)
        pylab.xticks(range(len(samples)), [nltk.compat.text_type(s) for s in samples], rotation=90)
        pylab.xlabel("Samples")
        pylab.ylabel(ylabel)
        pylab.gca().set_yscale('log', basey=2)
项目:computational_physics_N2014301020117    作者:yukangnineteen    | 项目源码 | 文件源码
def show_results(self):
        pl.plot(self.t1, self.n_A1, 'b--', label='A1: Time Step = 0.05')
        pl.plot(self.t1, self.n_B1, 'b', label='B1: Time Step = 0.05')
        pl.plot(self.t2, self.n_A2, 'g--', label='A2: Time Step = 0.1')
        pl.plot(self.t2, self.n_B2, 'g', label='B2: Time Step = 0.1')
        pl.plot(self.t1, self.n_A1_true, 'r--', label='True A1: Time Step = 0.05')
        pl.plot(self.t1, self.n_B1_true, 'r', label='True B1: Time Step = 0.05')
        pl.plot(self.t2, self.n_A2_true, 'c--', label='True A2: Time Step = 0.1')
        pl.plot(self.t2, self.n_B2_true, 'c', label='True B2: Time Step = 0.1')
        pl.title('Double Decay Probelm-Approximation Compared with True in Defferent Time Steps')
        pl.xlim(0.0, 0.1)
        pl.ylim(0.0, 100.0)
        pl.xlabel('time ($s$)')
        pl.ylabel('Number of Nuclei')
        pl.legend(loc='best', shadow=True, fontsize='small')
        pl.grid(True)
        pl.savefig("computational_physics homework 4(improved-7).png")
项目:computational_physics_N2014301020117    作者:yukangnineteen    | 项目源码 | 文件源码
def show_simple(self):
        font = {'family': 'serif',
                'color':  'k',
                'weight': 'normal',
                'size': 16,
        }
        pl.title('The Trajectory of Tageted Baseball\n with air flow in adiabatic model', fontdict = font)
        pl.plot(self.x, self.y, label ='$\\alpha = %.0f \degree$'%self.alpha)
        pl.xlabel('x $m$')
        pl.ylabel('y $m$')
        pl.xlim(0, 400)
        pl.ylim(-100, 200)
        pl.grid()
        pl.legend(loc = 'upper right', shadow = True, fontsize = 'medium')
        pl.text(5, -80, 'trojectories varing with angles of wind', fontdict = font)
        pl.show()
项目:computational_physics_N2014301020117    作者:yukangnineteen    | 项目源码 | 文件源码
def show_results(self):
        font = {'family': 'serif',
                'color':  'k',
                'weight': 'normal',
                'size': 14,
        }
        pl.plot(self.x, self.y, 'c', label='firing angle = 45°')
        pl.title('The Trajectory of a Cannon Shell', fontdict = font)
        pl.xlabel('x (k$m$)')
        pl.ylabel('y ($km$)')
        pl.xlim(0, 60)
        pl.ylim(0, 20)
        pl.grid(True)
        pl.legend(loc='upper right', shadow=True, fontsize='large')
        pl.text(41, 16, 'Only with air drag', fontdict = font)
        pl.show()
项目:computational_physics_N2014301020117    作者:yukangnineteen    | 项目源码 | 文件源码
def show_results(self):
        font = {'family': 'serif',
                'color':  'k',
                'weight': 'normal',
                'size': 12,
        }
        pl.plot(self.x, self.y, 'c', label='firing angle = 45°')
        pl.title('The Trajectory of a Cannon Shell', fontdict = font)
        pl.xlabel('x (k$m$)')
        pl.ylabel('y ($km$)')
        pl.xlim(0, 60)
        pl.ylim(0, 20)
        pl.grid(True)
        pl.legend(loc='upper right', shadow=True, fontsize='large')
        pl.text(34, 16, '       With both air drag and \n reduced air density-isothermal', fontdict = font)
        pl.show()
项目:computational_physics_N2014301020117    作者:yukangnineteen    | 项目源码 | 文件源码
def show_results(self):
        font = {'family': 'serif',
                'color':  'k',
                'weight': 'normal',
                'size': 12,
        }
        pl.plot(self.x, self.y, 'c', label='firing angle = 45°')
        pl.title('The Trajectory of a Cannon Shell', fontdict = font)
        pl.xlabel('x (k$m$)')
        pl.ylabel('y ($km$)')
        pl.xlim(0, 60)
        pl.ylim(0, 20)
        pl.grid(True)
        pl.legend(loc='upper right', shadow=True, fontsize='large')
        pl.text(34.5, 16, '      With air drag and the \n dependence of g on altitude', fontdict = font)
        pl.show()
项目:computational_physics_N2014301020117    作者:yukangnineteen    | 项目源码 | 文件源码
def show_results(self):
        font = {'family': 'serif',
                'color':  'k',
                'weight': 'normal',
                'size': 12,
        }
        pl.plot(self.x, self.y, 'c', label='firing angle = 45°')
        pl.title('The Trajectory of a Cannon Shell', fontdict = font)
        pl.xlabel('x (k$m$)')
        pl.ylabel('y ($km$)')
        pl.xlim(0, 60)
        pl.ylim(0, 20)
        pl.grid(True)
        pl.legend(loc='upper right', shadow=True, fontsize='large')
        pl.text(34.5, 16, '       With both air drag and \n reduced air density-adiabatic', fontdict = font)
        pl.show()
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def DrawDvs(pl, closes, curve, sign, dvs, pandl, sh, title, leag=None, lad=None ):
    pl.figure
    pl.subplot(311)
    pl.title("id:%s Sharpe ratio: %.2f"%(str(title),sh))
    pl.plot(closes)
    DrawLine(pl, sign, closes)
    pl.subplot(312)
    pl.grid()
    if dvs != None:
        pl.plot(dvs)
    if isinstance(curve, np.ndarray):
        DrawZZ(pl, curve, 'r')
    if leag != None:
        pl.plot(leag, 'r')
    if lad != None:
        pl.plot(lad, 'b')
    #pl.plot(stock.GuiYiHua(closes[:i])[60:])
    pl.subplot(313)
    pl.plot(sign)
    pl.plot(pandl)
    pl.show()
    pl.close()
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def DrawDvsAndZZ(pl, dvs, zz, closes=None):
    """dvs?zz??????; dvs : ????closes, """
    dvs = np.array(dvs)
    pl.figure
    if closes == None:
        pl.plot(dvs)
        pl.plot(zz[:,0], zz[:,1], 'r')
    else:
        pl.subplot(211)
        pl.plot(closes)
        pl.grid()
        pl.subplot(212)
        pl.grid()
        pl.plot(dvs)
        pl.plot(zz[:,0], zz[:,1], 'r')
    pl.show()
    pl.close()
项目:msnoise-tomo    作者:ThomasLecocq    | 项目源码 | 文件源码
def elltest(scale=0.8,off=0.2):
    #generate an example, random, non-self-intersecting polygon.
    #This is done by first generating
    #it in polar coordinates and than translating it
    #to cartesian.
    Theta1,R1=linspace(0,2*pi,30),rand(30)*scale+off
    X1,Y1=R1*cos(Theta1),R1*sin(Theta1)
    X1=append(X1,X1[0])
    Y1=append(Y1,Y1[0])

    p.plot(X1,Y1,".-",ms=10)


    a2,b2,ecc2,alpha2=ellfit(X1,Y1,showFig=False)

    Xe,Ye=ellipse(b2,a2,-alpha2,X1.mean(),Y1.mean(),Nb=40)

    p.plot(Xe,Ye,"r.-")


    p.grid(True)
    p.show()
    pass
项目:bokeh_roc_slider    作者:brianray    | 项目源码 | 文件源码
def plot(self,title='',include_baseline=False,equal_aspect=True):
        """ Method that generates a plot of the ROC curve
            Parameters:
                title: Title of the chart
                include_baseline: Add the baseline plot line if it's True
                equal_aspect: Aspects to be equal for all plot
        """

        pylab.clf()
        pylab.plot([x[0] for x in self.derived_points], [y[1] for y in self.derived_points], self.linestyle)
        if include_baseline:
            pylab.plot([0.0,1.0], [0.0,1.0],'k-.')
        pylab.ylim((0,1))
        pylab.xlim((0,1))
        pylab.xticks(pylab.arange(0,1.1,.1))
        pylab.yticks(pylab.arange(0,1.1,.1))
        pylab.grid(True)
        if equal_aspect:
            cax = pylab.gca()
            cax.set_aspect('equal')
        pylab.xlabel('1 - Specificity')
        pylab.ylabel('Sensitivity')
        pylab.title(title)

        pylab.show()
项目:Oedipus    作者:tum-i22    | 项目源码 | 文件源码
def plotAccuracyGraph(X, Y, Xlabel='Variable', Ylabel='Accuracy', graphTitle="Test Accuracy Graph", filename="graph.pdf"):
    """ Plots and saves accuracy graphs """
    try:
        timestamp = int(time.time())
        fig = P.figure(figsize=(8,5))
        # Set the graph's title
        P.title(graphTitle, fontname='monospace')
        # Set the axes labels
        P.xlabel(Xlabel, fontsize=12, fontname='monospace')
        P.ylabel(Ylabel, fontsize=12, fontname='monospace')
        # Add horizontal and vertical lines to the graph
        P.grid(color='DarkGray', linestyle='--', linewidth=0.1, axis='both')
        # Add the data to the graph
        P.plot(X, Y, 'r-*', linewidth=1.0)
        # Save figure
        prettyPrint("Saving figure to ./%s" % filename)#(graphTitle.replace(" ","_"), timestamp))
        P.tight_layout()
        fig.savefig("./%s" % filename)#(graphTitle.replace(" ", "_"), timestamp))

    except Exception as e:
        prettyPrint("Error encountered in \"plotAccuracyGraph\": %s" % e, "error")
        return False

    return True
项目:audio_scripts    作者:audiofilter    | 项目源码 | 文件源码
def plot_sum_data(sum_data):
    pdata = numpy.array(sum_data, dtype=numpy.int16)
    pylab.figure()
    pylab.plot(pdata)
    pylab.grid(True)
    pylab.show()
项目:siren    作者:ozsolarwind    | 项目源码 | 文件源码
def PowerCurve(self):
        """plot power curve."""
        plt.plot(self.speeds, self.powers, linewidth=2.0)
        plt.title('Power Curve for ' + self.name)
        plt.grid(True)
        plt.xlabel('wind speed (m/s)')
        plt.ylabel('generation (kW)')
        plt.show(block=True)
项目:siren    作者:ozsolarwind    | 项目源码 | 文件源码
def initUI(self):
        self.grid = QtGui.QGridLayout()
        self.checkbox = []
        i = 0
        bold = QtGui.QFont()
        bold.setBold(True)
        for plot in range(len(self.plot_order)):
            if self.plot_order[plot] in self.spacers:
                label = QtGui.QLabel(self.spacers[self.plot_order[plot]])
                label.setFont(bold)
                self.grid.addWidget(label, i, 0)
                i += 1
            self.checkbox.append(QtGui.QCheckBox(self.hdrs[self.plot_order[plot]], self))
            if self.plots[self.plot_order[plot]]:
                self.checkbox[plot].setCheckState(QtCore.Qt.Checked)
            self.grid.addWidget(self.checkbox[-1], i, 0)
            i += 1
        self.grid.connect(self.checkbox[0], QtCore.SIGNAL('stateChanged(int)'), self.check_all)
        show = QtGui.QPushButton('Proceed', self)
        show.clicked.connect(self.showClicked)
        self.grid.addWidget(show, i, 0)
        frame = QtGui.QFrame()
        frame.setLayout(self.grid)
        self.scroll = QtGui.QScrollArea()
        self.scroll.setWidgetResizable(True)
        self.scroll.setWidget(frame)
        self.layout = QtGui.QVBoxLayout(self)
        self.layout.addWidget(self.scroll)
        commnt = QtGui.QLabel('Nearest weather files:\n' + self.comment)
        self.layout.addWidget(commnt)
        self.setWindowTitle('SIREN - Weather dialog for ' + str(self.base_year))
        QtGui.QShortcut(QtGui.QKeySequence('q'), self, self.quitClicked)
        self.show_them = False
        self.show()
项目:siren    作者:ozsolarwind    | 项目源码 | 文件源码
def initUI(self):
        self.chosen = []
        self.grid = QtGui.QGridLayout()
        self.checkbox = []
        self.checkbox.append(QtGui.QCheckBox('Check / Uncheck all', self))
        self.grid.addWidget(self.checkbox[-1], 0, 0)
        i = 0
        c = 0
        icons = Icons()
        for stn in sorted(self.stations, key=lambda station: station.name):
            if stn.technology[:6] == 'Fossil' and not self.actual:
                continue
            if stn.technology == 'Rooftop PV' and stn.scenario == 'Existing' and not self.gross_load:
                continue
            self.checkbox.append(QtGui.QCheckBox(stn.name, self))
            icon = icons.getIcon(stn.technology)
            if icon != '':
                self.checkbox[-1].setIcon(QtGui.QIcon(icon))
            i += 1
            self.grid.addWidget(self.checkbox[-1], i, c)
            if i > 25:
                i = 0
                c += 1
        self.grid.connect(self.checkbox[0], QtCore.SIGNAL('stateChanged(int)'), self.check_all)
        show = QtGui.QPushButton('Choose', self)
        self.grid.addWidget(show, i + 1, c)
        show.clicked.connect(self.showClicked)
        self.setLayout(self.grid)
        self.setWindowTitle('SIREN - Power Stations dialog')
        QtGui.QShortcut(QtGui.QKeySequence('q'), self, self.quitClicked)
        self.show_them = False
        self.show()
项目:multi-contact-zmp    作者:stephane-caron    | 项目源码 | 文件源码
def plot_com(self):
        pylab.plot(
            [-p[1] for p in self.com_real], [p[0] for p in self.com_real],
            'g-', lw=2)
        pylab.plot(
            [-p[1] for p in self.com_ref], [p[0] for p in self.com_ref],
            'k--', lw=1)
        pylab.legend(('$p_G$', '$p_G^{ref}$'), loc='upper right')
        pylab.grid(False)
        pylab.xlim(self.xlim)
        pylab.ylim(self.ylim)
        pylab.xlabel(self.xlabel)
        pylab.ylabel(self.ylabel)
        pylab.title("COM trajectory")
项目:multi-contact-zmp    作者:stephane-caron    | 项目源码 | 文件源码
def plot_zmp(self):
        pylab.plot(
            [-p[1] for p in self.zmp_real], [p[0] for p in self.zmp_real],
            'r-', lw=2)
        pylab.plot(
            [-p[1] for p in self.zmp_ref], [p[0] for p in self.zmp_ref],
            'k--', lw=1)
        pylab.legend(('$p_Z$', '$p_Z^{ref}$'), loc='upper right')
        pylab.grid(False)
        pylab.xlim(self.xlim)
        pylab.ylim(self.ylim)
        pylab.xlabel(self.xlabel)
        pylab.ylabel(self.ylabel)
        pylab.title("ZMP trajectory")
项目:dynamic-walking    作者:stephane-caron    | 项目源码 | 文件源码
def test_dT_impact(xvals, f, nmpc, sim, start=0.1, end=0.8, step=0.02, ymax=200,
                   sample_size=100, label=None):
    """Used to generate Figure XX of the paper."""
    c = raw_input("Did you remove iter/time caps in IPOPT settings? [y/N] ")
    if c.lower() not in ['y', 'yes']:
        print "Then go ahead and do it."
        return
    stats = [Statistics() for _ in xrange(len(xvals))]
    fails = [0. for _ in xrange(len(xvals))]
    pylab.ion()
    pylab.clf()
    for (i, dT) in enumerate(xvals):
        f(dT)
        for _ in xrange(sample_size):
            nmpc.on_tick(sim)
            if 'Solve' in nmpc.nlp.return_status:
                stats[i].add(nmpc.nlp.solve_time)
            else:  # max CPU time exceeded, infeasible problem detected, ...
                fails[i] += 1.
    yvals = [1000 * ts.avg if ts.avg is not None else 0. for ts in stats]
    yerr = [1000 * ts.std if ts.std is not None else 0. for ts in stats]
    pylab.bar(
        xvals, yvals, width=step, yerr=yerr, color='y', capsize=5,
        align='center', error_kw={'capsize': 5, 'elinewidth': 5})
    pylab.xlim(start - step / 2, end + step / 2)
    pylab.ylim(0, ymax)
    pylab.grid(True)
    if label is not None:
        pylab.xlabel(label, fontsize=24)
    pylab.ylabel('Comp. time (ms)', fontsize=20)
    pylab.tick_params(labelsize=16)
    pylab.twinx()
    yfails = [100. * fails[i] / sample_size for i in xrange(len(xvals))]
    pylab.plot(xvals, yfails, 'ro', markersize=12)
    pylab.plot(xvals, yfails, 'r--', linewidth=3)
    pylab.xlim(start - step / 2, end + step / 2)
    pylab.ylabel("Failure rate [%]", fontsize=20)
    pylab.tight_layout()
项目:computational_physics_N2014301020117    作者:yukangnineteen    | 项目源码 | 文件源码
def show_results(self):
        pl.plot(self.t1, self.n_A1, 'b--', label='A1, Time Step = 0.05')
        pl.plot(self.t1, self.n_B1, 'b', label='B1, Time Step = 0.05')
        pl.plot(self.t2, self.n_A2, 'g--', label='A2, Time Step = 0.01')
        pl.plot(self.t2, self.n_B2, 'g', label='B2, Time Step = 0.01')
        pl.plot(self.t3, self.n_A3, 'r--', label='A3, Time Step = 0.1')
        pl.plot(self.t3, self.n_B3, 'r', label='B3, Time Step = 0.1')
        pl.title('Double Decay Probelm-Three Time Steps')
        pl.xlim(0.0, 2.5)
        pl.ylim(0.0, 100.0)
        pl.xlabel('time ($s$)')
        pl.ylabel('Number of Nuclei')
        pl.legend(loc='best', shadow=True, fontsize='small')
        pl.grid(True)
项目:computational_physics_N2014301020117    作者:yukangnineteen    | 项目源码 | 文件源码
def show_results(self):
        pl.plot(self.t, self.n_A, 'b--', label='Number of Nuclei A')
        pl.plot(self.t, self.n_B, 'b', label='Number of Nuclei B')
        pl.plot(self.t, self.n_A_true, 'g--', label='True Number of Nuclei A')
        pl.plot(self.t, self.n_B_true, 'g', label='True Number of Nuclei B')
        pl.title('Double Decay Probelm-Approximation Compared with True')
        pl.xlim(0.0, 2.5)
        pl.ylim(0.0, 100.0)
        pl.xlabel('time ($s$)')
        pl.ylabel('Number of Nuclei')
        pl.legend(loc='best', shadow=True)
        pl.grid(True)
项目:computational_physics_N2014301020117    作者:yukangnineteen    | 项目源码 | 文件源码
def show_results(self):
        pl.plot(self.t, self.n_A, 'b--', label='Number of Nuclei A')
        pl.plot(self.t, self.n_B, 'b', label='Number of Nuclei B')
        pl.plot(self.t, self.n_A_true, 'g--', label='True Number of Nuclei A')
        pl.plot(self.t, self.n_B_true, 'g', label='True Number of Nuclei B')
        pl.title('Double Decay Probelm-Approximation Compared with True')
        pl.xlim(0.0, 2.5)
        pl.ylim(0.0, 100.0)
        pl.xlabel('time ($s$)')
        pl.ylabel('Number of Nuclei')
        pl.legend(loc='best', shadow=True)
        pl.grid(True)
项目:computational_physics_N2014301020117    作者:yukangnineteen    | 项目源码 | 文件源码
def show_results(self):
        pl.plot(self.t, self.n_A, 'b--', label='Number of Nuclei A')
        pl.plot(self.t, self.n_B, 'b', label='Number of Nuclei B')
        pl.plot(self.t, self.n_A_true, 'g--', label='True Number of Nuclei A')
        pl.plot(self.t, self.n_B_true, 'g', label='True Number of Nuclei B')
        pl.title('Double Decay Probelm-Approximation Compared with True')
        pl.xlim(0.0, 2.5)
        pl.ylim(0.0, 100.0)
        pl.xlabel('time ($s$)')
        pl.ylabel('Number of Nuclei')
        pl.legend(loc='best', shadow=True)
        pl.grid(True)
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def ShowZZ(pl, zz, title=''):
    pl.figure
    pl.grid()
    if title != '':
        pl.title(title)
    DrawZZ(pl, zz, c='b')
    pl.show()
    pl.close()
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def grid(self, *args, **kwargs):
        pl.grid(*args, **kwargs)
项目:plasma    作者:jnkh    | 项目源码 | 文件源码
def plot_losses(conf,losses_list,builder,name=''):
    unique_id = builder.get_unique_id()
    savedir = 'losses'
    if not os.path.exists(savedir):
        os.makedirs(savedir)

    save_path = os.path.join(savedir,'{}_loss_{}.png'.format(name,unique_id))
    pl.figure()
    for losses in losses_list:
        pl.semilogy(losses)
    pl.xlabel('Epoch')
    pl.ylabel('Loss')
    pl.grid()
    pl.savefig(save_path)
项目:bokeh_roc_slider    作者:brianray    | 项目源码 | 文件源码
def plot_multiple_roc(rocList,title='',labels=None, include_baseline=False, equal_aspect=True):
    """ Plots multiple ROC curves on the same chart.
        Parameters:
            rocList: the list of ROCData objects
            title: The tile of the chart
            labels: The labels of each ROC curve
            include_baseline: if it's  True include the random baseline
            equal_aspect: keep equal aspect for all roc curves
    """
    pylab.clf()
    pylab.ylim((0,1))
    pylab.xlim((0,1))
    pylab.xticks(pylab.arange(0,1.1,.1))
    pylab.yticks(pylab.arange(0,1.1,.1))
    pylab.grid(True)
    if equal_aspect:
        cax = pylab.gca()
        cax.set_aspect('equal')
    pylab.xlabel("1 - Specificity")
    pylab.ylabel("Sensitivity")
    pylab.title(title)
    if not labels:
        labels = [ '' for x in rocList]
    _remove_duplicate_styles(rocList)
    for ix, r in enumerate(rocList):
        pylab.plot([x[0] for x in r.derived_points], [y[1] for y in r.derived_points], r.linestyle, linewidth=1, label=labels[ix])
    if include_baseline:
        pylab.plot([0.0,1.0], [0.0, 1.0], 'k-', label= 'random')
    if labels:
        pylab.legend(loc='lower right')

    pylab.show()
项目:PyFusionGUI    作者:SyntaxVoid    | 项目源码 | 文件源码
def plot(self):
        import pylab as pl
        pl.plot(self.dim, self.signal)
        pl.xlabel(self.dim_units)
        pl.ylabel(self.signal_units)
        pl.grid(True)
        pl.show()
项目:sequana    作者:sequana    | 项目源码 | 文件源码
def get_required_coverage(self, M=0.01):
        """Return the required coverage to ensure the genome is covered

        A general question is what should be the coverage to make sure
        that e.g. E=99% of the genome is covered by at least a read.

        The answer is:

        .. math:: \log^{-1/(E-1)}

        This equation is correct but have a limitation due to floating precision. 
        If one provides E=0.99, the answer is 4.6 but we are limited to a
        maximum coverage of about 36 when one provides E=0.9999999999999999
        after which E is rounded to 1 on most computers. Besides, it is no
        convenient to enter all those numbers. A scientific notation would be better but
        requires to work with :math:`M=1-E` instead of :math:`E`.

        .. math:: \log^{-1/ - M}

        So instead of asking the question what is the
        requested fold coverage to have 99% of the genome covered, we ask the question what
        is the requested fold coverage to have 1% of the genome not covered.
        This allows us to use :math:`M` values as low as 1e-300 that is a fold coverage 
        as high as 690.


        :param float M: this is the fraction of the genome not covered by
            any reads (e.g. 0.01 for 1%). See note above.
        :return: the required fold coverage

        .. plot::

            import pylab
            from sequana import Coverage
            cover = Coverage()
            misses = np.array([1e-1, 1e-2, 1e-3, 1e-4,1e-5,1e-6])
            required_coverage = cover.get_required_coverage(misses)
            pylab.semilogx(misses, required_coverage, 'o-')
            pylab.ylabel("Required coverage", fontsize=16)
            pylab.xlabel("Uncovered genome", fontsize=16)
            pylab.grid()

        # The inverse equation is required fold coverage = [log(-1/(E - 1))]
        """
        # What should be the fold coverage to have 99% of the genome sequenced ?
        # It is the same question as equating 1-e^{-(NL/G}) == 0.99, we need NL/G = 4.6
        if isinstance(M, float) or isinstance(M, int):
            assert M < 1
            assert M >=0
        else:
            M = np.array(M)
        # Here we do not use log(-1/(E-1)) but log(-1/(1-E-1)) to allow
        # for using float down to 1e-300 since 0.999999999999999 == 1
        return np.log(-1/(-M))
项目:svm-street-detector    作者:morris-frank    | 项目源码 | 文件源码
def plotPrecisionRecall(precision, recall, outFileName, Fig=None, drawCol=1, textLabel = None, title = None, fontsize1 = 24, fontsize2 = 20, linewidth = 3):
    '''

    :param precision:
    :param recall:
    :param outFileName:
    :param Fig:
    :param drawCol:
    :param textLabel:
    :param fontsize1:
    :param fontsize2:
    :param linewidth:
    '''

    clearFig = False  

    if Fig == None:
        Fig = pylab.figure()
        clearFig = True

    #tableString = 'Algo avgprec Fmax prec recall accuracy fpr Q(TonITS)\n'
    linecol = ['g','m','b','c']
    #if we are evaluating SP, then BL is available
    #sectionName = 'Evaluation_'+tag+'PxProb'
    #fullEvalFile = os.path.join(eval_dir,evalName)
    #Precision,Recall,evalString = readEvaluation(fullEvalFile,sectionName,AlgoLabel)

    pylab.plot(100*recall, 100*precision, linewidth=linewidth, color=linecol[drawCol], label=textLabel)


    #writing out PrecRecall curves as graphic
    setFigLinesBW(Fig)
    if textLabel!= None:
        pylab.legend(loc='lower left',prop={'size':fontsize2})

    if title!= None:
        pylab.title(title, fontsize=fontsize1)

    #pylab.title(title,fontsize=24)
    pylab.ylabel('PRECISION [%]',fontsize=fontsize1)
    pylab.xlabel('RECALL [%]',fontsize=fontsize1)

    pylab.xlim(0,100)
    pylab.xticks( [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
                      ('0','','20','','40','','60','','80','','100'), fontsize=fontsize2 )
    pylab.ylim(0,100)
    pylab.yticks( [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
                      ('0','','20','','40','','60','','80','','100'), fontsize=fontsize2 )
    pylab.grid(True)

    # 
    if type(outFileName) != list:
        pylab.savefig( outFileName )
    else:
        for outFn in outFileName:
            pylab.savefig( outFn )
    if clearFig:
        pylab.close()
        Fig.clear()
项目:VOCSeg    作者:lxh-123    | 项目源码 | 文件源码
def plotPrecisionRecall(precision, recall, outFileName, Fig=None, drawCol=1, textLabel = None, title = None, fontsize1 = 24, fontsize2 = 20, linewidth = 3):
    '''

    :param precision:
    :param recall:
    :param outFileName:
    :param Fig:
    :param drawCol:
    :param textLabel:
    :param fontsize1:
    :param fontsize2:
    :param linewidth:
    '''

    clearFig = False  

    if Fig == None:
        Fig = pylab.figure()
        clearFig = True

    #tableString = 'Algo avgprec Fmax prec recall accuracy fpr Q(TonITS)\n'
    linecol = ['g','m','b','c']
    #if we are evaluating SP, then BL is available
    #sectionName = 'Evaluation_'+tag+'PxProb'
    #fullEvalFile = os.path.join(eval_dir,evalName)
    #Precision,Recall,evalString = readEvaluation(fullEvalFile,sectionName,AlgoLabel)

    pylab.plot(100*recall, 100*precision, linewidth=linewidth, color=linecol[drawCol], label=textLabel)


    #writing out PrecRecall curves as graphic
    setFigLinesBW(Fig)
    if textLabel!= None:
        pylab.legend(loc='lower left',prop={'size':fontsize2})

    if title!= None:
        pylab.title(title, fontsize=fontsize1)

    #pylab.title(title,fontsize=24)
    pylab.ylabel('PRECISION [%]',fontsize=fontsize1)
    pylab.xlabel('RECALL [%]',fontsize=fontsize1)

    pylab.xlim(0,100)
    pylab.xticks( [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
                      ('0','','20','','40','','60','','80','','100'), fontsize=fontsize2 )
    pylab.ylim(0,100)
    pylab.yticks( [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
                      ('0','','20','','40','','60','','80','','100'), fontsize=fontsize2 )
    pylab.grid(True)

    # 
    if type(outFileName) != list:
        pylab.savefig( outFileName )
    else:
        for outFn in outFileName:
            pylab.savefig( outFn )
    if clearFig:
        pylab.close()
        Fig.clear()
项目:VOCSeg    作者:lxh-123    | 项目源码 | 文件源码
def plotPrecisionRecall(precision, recall, outFileName, Fig=None, drawCol=1, textLabel = None, title = None, fontsize1 = 24, fontsize2 = 20, linewidth = 3):
    '''

    :param precision:
    :param recall:
    :param outFileName:
    :param Fig:
    :param drawCol:
    :param textLabel:
    :param fontsize1:
    :param fontsize2:
    :param linewidth:
    '''

    clearFig = False  

    if Fig == None:
        Fig = pylab.figure()
        clearFig = True

    #tableString = 'Algo avgprec Fmax prec recall accuracy fpr Q(TonITS)\n'
    linecol = ['g','m','b','c']
    #if we are evaluating SP, then BL is available
    #sectionName = 'Evaluation_'+tag+'PxProb'
    #fullEvalFile = os.path.join(eval_dir,evalName)
    #Precision,Recall,evalString = readEvaluation(fullEvalFile,sectionName,AlgoLabel)

    pylab.plot(100*recall, 100*precision, linewidth=linewidth, color=linecol[drawCol], label=textLabel)


    #writing out PrecRecall curves as graphic
    setFigLinesBW(Fig)
    if textLabel!= None:
        pylab.legend(loc='lower left',prop={'size':fontsize2})

    if title!= None:
        pylab.title(title, fontsize=fontsize1)

    #pylab.title(title,fontsize=24)
    pylab.ylabel('PRECISION [%]',fontsize=fontsize1)
    pylab.xlabel('RECALL [%]',fontsize=fontsize1)

    pylab.xlim(0,100)
    pylab.xticks( [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
                      ('0','','20','','40','','60','','80','','100'), fontsize=fontsize2 )
    pylab.ylim(0,100)
    pylab.yticks( [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
                      ('0','','20','','40','','60','','80','','100'), fontsize=fontsize2 )
    pylab.grid(True)

    # 
    if type(outFileName) != list:
        pylab.savefig( outFileName )
    else:
        for outFn in outFileName:
            pylab.savefig( outFn )
    if clearFig:
        pylab.close()
        Fig.clear()
项目:KittiSeg    作者:MarvinTeichmann    | 项目源码 | 文件源码
def plotPrecisionRecall(precision, recall, outFileName, Fig=None, drawCol=1, textLabel = None, title = None, fontsize1 = 24, fontsize2 = 20, linewidth = 3):
    '''

    :param precision:
    :param recall:
    :param outFileName:
    :param Fig:
    :param drawCol:
    :param textLabel:
    :param fontsize1:
    :param fontsize2:
    :param linewidth:
    '''

    clearFig = False  

    if Fig == None:
        Fig = pylab.figure()
        clearFig = True

    #tableString = 'Algo avgprec Fmax prec recall accuracy fpr Q(TonITS)\n'
    linecol = ['g','m','b','c']
    #if we are evaluating SP, then BL is available
    #sectionName = 'Evaluation_'+tag+'PxProb'
    #fullEvalFile = os.path.join(eval_dir,evalName)
    #Precision,Recall,evalString = readEvaluation(fullEvalFile,sectionName,AlgoLabel)

    pylab.plot(100*recall, 100*precision, linewidth=linewidth, color=linecol[drawCol], label=textLabel)


    #writing out PrecRecall curves as graphic
    setFigLinesBW(Fig)
    if textLabel!= None:
        pylab.legend(loc='lower left',prop={'size':fontsize2})

    if title!= None:
        pylab.title(title, fontsize=fontsize1)

    #pylab.title(title,fontsize=24)
    pylab.ylabel('PRECISION [%]',fontsize=fontsize1)
    pylab.xlabel('RECALL [%]',fontsize=fontsize1)

    pylab.xlim(0,100)
    pylab.xticks( [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
                      ('0','','20','','40','','60','','80','','100'), fontsize=fontsize2 )
    pylab.ylim(0,100)
    pylab.yticks( [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
                      ('0','','20','','40','','60','','80','','100'), fontsize=fontsize2 )
    pylab.grid(True)

    # 
    if type(outFileName) != list:
        pylab.savefig( outFileName )
    else:
        for outFn in outFileName:
            pylab.savefig( outFn )
    if clearFig:
        pylab.close()
        Fig.clear()
项目:KittiSeg    作者:MarvinTeichmann    | 项目源码 | 文件源码
def plotPrecisionRecall(precision, recall, outFileName, Fig=None, drawCol=1, textLabel = None, title = None, fontsize1 = 24, fontsize2 = 20, linewidth = 3):
    '''

    :param precision:
    :param recall:
    :param outFileName:
    :param Fig:
    :param drawCol:
    :param textLabel:
    :param fontsize1:
    :param fontsize2:
    :param linewidth:
    '''

    clearFig = False  

    if Fig == None:
        Fig = pylab.figure()
        clearFig = True

    #tableString = 'Algo avgprec Fmax prec recall accuracy fpr Q(TonITS)\n'
    linecol = ['g','m','b','c']
    #if we are evaluating SP, then BL is available
    #sectionName = 'Evaluation_'+tag+'PxProb'
    #fullEvalFile = os.path.join(eval_dir,evalName)
    #Precision,Recall,evalString = readEvaluation(fullEvalFile,sectionName,AlgoLabel)

    pylab.plot(100*recall, 100*precision, linewidth=linewidth, color=linecol[drawCol], label=textLabel)


    #writing out PrecRecall curves as graphic
    setFigLinesBW(Fig)
    if textLabel!= None:
        pylab.legend(loc='lower left',prop={'size':fontsize2})

    if title!= None:
        pylab.title(title, fontsize=fontsize1)

    #pylab.title(title,fontsize=24)
    pylab.ylabel('PRECISION [%]',fontsize=fontsize1)
    pylab.xlabel('RECALL [%]',fontsize=fontsize1)

    pylab.xlim(0,100)
    pylab.xticks( [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
                      ('0','','20','','40','','60','','80','','100'), fontsize=fontsize2 )
    pylab.ylim(0,100)
    pylab.yticks( [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
                      ('0','','20','','40','','60','','80','','100'), fontsize=fontsize2 )
    pylab.grid(True)

    # 
    if type(outFileName) != list:
        pylab.savefig( outFileName )
    else:
        for outFn in outFileName:
            pylab.savefig( outFn )
    if clearFig:
        pylab.close()
        Fig.clear()
项目:KittiSeg    作者:MarvinTeichmann    | 项目源码 | 文件源码
def plotPrecisionRecall(precision, recall, outFileName, Fig=None, drawCol=1, textLabel = None, title = None, fontsize1 = 24, fontsize2 = 20, linewidth = 3):
    '''

    :param precision:
    :param recall:
    :param outFileName:
    :param Fig:
    :param drawCol:
    :param textLabel:
    :param fontsize1:
    :param fontsize2:
    :param linewidth:
    '''

    clearFig = False  

    if Fig == None:
        Fig = pylab.figure()
        clearFig = True

    #tableString = 'Algo avgprec Fmax prec recall accuracy fpr Q(TonITS)\n'
    linecol = ['g','m','b','c']
    #if we are evaluating SP, then BL is available
    #sectionName = 'Evaluation_'+tag+'PxProb'
    #fullEvalFile = os.path.join(eval_dir,evalName)
    #Precision,Recall,evalString = readEvaluation(fullEvalFile,sectionName,AlgoLabel)

    pylab.plot(100*recall, 100*precision, linewidth=linewidth, color=linecol[drawCol], label=textLabel)


    #writing out PrecRecall curves as graphic
    setFigLinesBW(Fig)
    if textLabel!= None:
        pylab.legend(loc='lower left',prop={'size':fontsize2})

    if title!= None:
        pylab.title(title, fontsize=fontsize1)

    #pylab.title(title,fontsize=24)
    pylab.ylabel('PRECISION [%]',fontsize=fontsize1)
    pylab.xlabel('RECALL [%]',fontsize=fontsize1)

    pylab.xlim(0,100)
    pylab.xticks( [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
                      ('0','','20','','40','','60','','80','','100'), fontsize=fontsize2 )
    pylab.ylim(0,100)
    pylab.yticks( [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
                      ('0','','20','','40','','60','','80','','100'), fontsize=fontsize2 )
    pylab.grid(True)

    # 
    if type(outFileName) != list:
        pylab.savefig( outFileName )
    else:
        for outFn in outFileName:
            pylab.savefig( outFn )
    if clearFig:
        pylab.close()
        Fig.clear()
项目:Kionix-IoT-Evaluation-Kit    作者:RohmSemiconductor    | 项目源码 | 文件源码
def doit(csvfile):
    sensordata=[]
    timestamplist=[]
    if 1:#with open(fname, 'rb') as csvfile:

        for t in range(args.skip_lines): csvfile.readline()

        reader = csv.reader(csvfile, delimiter=args.delimiter)
        for a in reader:

            if a==[]: continue # empty line            
            try:
                values = [float(t.replace(',','.')) for t in a if t !='']
            except Exception,e:
                print a, e
                continue

            if args.columns:
                values = [values[t] for t in args.columns]

            if args.timestamps:
                sensordata.append(values[1:])
                timestamplist.append(values[0])

            else: 
                sensordata.append(values)


        if args.histogram:
            import matplotlib.mlab as mlab
            mu = mlab.np.average(sensordata)
            sigma = max(abs(mlab.np.max(sensordata)- mu), abs(mlab.np.min(sensordata)- mu))

            # the histogram of the data
            n, bins, patches = pylab.hist(mlab.np.array(sensordata), 100, normed=True, facecolor='green', alpha=0.75)

            pylab.grid()
            pylab.show()

        if args.output_file_name:
            outfile = open(args.output_file_name,'w')
            for line in sensordata:
                outfile.write(args.output_delimiter.join([args.output_formatter % round(t*args.output_multiplier) for t in line])+'\n')
        else:

            if timestamplist!=[]: # data with timestamp
                pylab.plot(timestamplist, sensordata, args.tick_mark)
                pylab.xlabel('time')
            else:
                pylab.plot(sensordata, args.tick_mark)
                pylab.xlabel('sample #')

            pylab.title(csvfile.name)

            if args.legend:
                pylab.legend(args.legend)

            pylab.grid()
            pylab.show()
项目:myhdl-experiments    作者:CodeReclaimers    | 项目源码 | 文件源码
def iz_test_bench(a, b, c, d, dt, Fshift):
    max_val = 1 << (Fshift + 7)

    I = Signal(intbv(0, min=-max_val, max=max_val))
    output = Signal(bool(0))

    clk = Signal(bool(0))
    reset = ResetSignal(1, active=0, async=True)

    neuron_instance = neuron_module(clk, reset, I, output, a, b, c, d, dt, Fshift)

    @always(delay(50))
    def clkgen():
        clk.next = not clk

    @instance
    def stimulus():
        I.next = 0
        yield delay(10000)
        I.next = to_fixed(10.0, Fshift)
        yield delay(100000)
        I.next = 0
        yield delay(10000)

        pylab.figure(1)
        pylab.subplot(311)
        pylab.title("MyHDL Izhikevitch neuron (chattering)")
        pylab.plot(t_values, v_values, label="v")
        pylab.ylabel('membrane potential (mv)')
        pylab.grid()
        pylab.subplot(312)
        pylab.plot(t_values, u_values, label="u")
        pylab.ylabel("recovery variable")
        pylab.grid()
        pylab.subplot(313)
        pylab.plot(t_values, I_values, label="I")
        pylab.grid()
        pylab.ylabel("input current")
        pylab.xlabel("time (usec)")
        pylab.show()

        raise StopSimulation

    return clkgen, stimulus, neuron_instance


# Uncomment definitions of a, b, c, d to choose different neuron types.

# Regular spiking
#a, b, c, d = 0.02, 0.2, -65.0, 8.0

# Fast spiking
#a, b, c, d = 0.1, 0.2, -65.0, 2.0

#intrinsically bursting
#a, b, c, d =0.02, 0.2, -55.0, 4.0

# chattering
项目:Oedipus    作者:tum-i22    | 项目源码 | 文件源码
def plotReductionGraph(dataSamples, dataLabels, classNames, dimension=2, graphTitle="Test Graph", filename="reduction.pdf"):
    """ Plots data sample visualization graphs """
    try:
        timestamp = int(time.time())
        colors = ['DarkRed', 'DarkGreen', 'DarkBlue', 'DarkOrange', 'DarkMagenta', 'DarkCyan', 'Gray', 'Black']
        randomColor = lambda: random.randint(0,255)
        markers = ['*', 'o', 'v', '^', 's', 'd', 'D', 'p', 'h', 'H', '<', '>', '.', ',', '|', '_']

        fig = P.figure(figsize=(8,5))
        if dimension == 3:
            ax = fig.add_subplot(111, projection='3d')
        P.title(graphTitle, fontname='monospace')
        if dimension == 2:
            P.xlabel('x1', fontsize=12, fontname='monospace')
            P.ylabel('x2', fontsize=12, fontname='monospace')
        else:
            ax.set_xlabel('x1', fontsize=12, fontname='monospace')
            ax.set_ylabel('x2', fontsize=12, fontname='monospace')
            ax.set_zlabel('x3', fontsize=12, fontname='monospace')

        P.grid(color='DarkGray', linestyle='--', linewidth=0.1, axis='both')

        for c in range(len(classNames)):
            X,Y,Z = [], [], []
            for labelIndex in range(len(dataLabels)):
                if c == dataLabels[labelIndex]:
                    X.append(dataSamples[labelIndex,:].tolist()[0])
                    Y.append(dataSamples[labelIndex,:].tolist()[1])
                    if dimension == 3:
                        Z.append(dataSamples[labelIndex,:].tolist()[2])

            # Plot points of that class
            #P.plot(Y, X, color='#%02X%02X%02X' % (randomColor(), randomColor(), randomColor()), marker=markers[c], markeredgecolor='None', markersize=4.0, linestyle='None', label=classNames[c])
            if dimension == 2:
                P.plot(Y, X, color=colors[c % len(colors)], marker=markers[c % len(markers)], markersize=5.0, linestyle='None', label=classNames[c])
            else:
                ax.scatter(X,Y,Z,c=colors[c % len(colors)], marker=markers[c % len(markers)])

        if dimension == 2:
            #P.legend([x.split(",")[-1] for x in classNames], fontsize='xx-small', numpoints=1, fancybox=True)
            P.legend([x for x in classNames], fontsize='xx-small', numpoints=1, fancybox=True)
        else:
            ax.legend([x for x in classNames], fontsize='xx-small', numpoints=1, fancybox=True)

        prettyPrint("Saving results to ./%s" % filename)#(graphTitle, timestamp))
        P.tight_layout()
        fig.savefig("./%s" % filename)#(graphTitle, timestamp))

    except Exception as e:
        prettyPrint("Error encountered in \"plotReductionGraph\": %s" % e, "error")
        return False

    return True