Python pylab 模块,hist() 实例源码

我们从Python开源项目中,提取了以下27个代码示例,用于说明如何使用pylab.hist()

项目:sequana    作者:sequana    | 项目源码 | 文件源码
def plot_bar_mapq(self, fontsize=16, filename=None):
        """Plots bar plots of the MAPQ (quality) of alignments

            .. plot::
                :include-source:

                from sequana import BAM, sequana_data
                b = BAM(sequana_data('test.bam', "testing"))
                b.plot_bar_mapq()

        """
        df = self.get_mapq_as_df()
        df.plot(kind='hist', bins=range(0,df.max().values[0]+1), legend=False,
            grid=True, logy=True)
        pylab.xlabel("MAPQ", fontsize=fontsize)
        pylab.ylabel("Count", fontsize=fontsize)
        try:
            # This may raise issue on MAC platforms
            pylab.tight_layout()
        except:
            pass
        if filename:
            pylab.savefig(filename)
项目:sequana    作者:sequana    | 项目源码 | 文件源码
def hist_coverage(self, bins=100):
        """

        .. plot::
            :include-source:

            from sequana import sequana_data, BAM
            b = BAM(sequana_data("measles.fa.sorted.bam"))
            b.hist_coverage()
        """
        try: self.coverage
        except: self.set_fast_stats()
        pylab.hist(self.coverage, bins=bins)
        pylab.xlabel("Coverage")
        pylab.ylabel("Number of mapped bases")
        pylab.grid()
项目:astromalign    作者:dstndstn    | 项目源码 | 文件源码
def plotmatchdisthist(M, mas=True, nbins=100, doclf=True, color='b', **kwa):
    import pylab as plt
    if doclf:
        plt.clf()
    R = np.sqrt(M.dra_arcsec**2 + M.ddec_arcsec**2)
    if mas:
        R *= 1000.
        rng = [0, M.rad*1000.]
    else:
        rng = [0, M.rad]
    print 'Match distances: median', np.median(R), 'arcsec'
    n,b,p = plt.hist(R, nbins, range=rng, histtype='step', color=color, **kwa)
    if mas:
        plt.xlabel('Match distance (mas)')
    else:
        plt.xlabel('Match distance (arcsec)')
    plt.xlim(*rng)
    return n,b,p
项目:CAAPR    作者:Stargrazer82301    | 项目源码 | 文件源码
def plotHistPopScore(population, fitness=False):
   """ Population score distribution histogram

   Example:
      >>> Interaction.plotHistPopScore(population)

   :param population: population object (:class:`GPopulation.GPopulation`)
   :param fitness: if True, the fitness score will be used, otherwise, the raw.
   :rtype: None

   """
   score_list = getPopScores(population, fitness)
   n, bins, patches = pylab.hist(score_list, 50, facecolor='green', alpha=0.75, normed=1)
   pylab.plot(bins, pylab.normpdf(bins, numpy.mean(score_list), numpy.std(score_list)), 'r--')
   pylab.xlabel('Score')
   pylab.ylabel('Frequency')
   pylab.grid(True)
   pylab.title("Plot of population score distribution")
   pylab.show()

# -----------------------------------------------------------------
项目:CAAPR    作者:Stargrazer82301    | 项目源码 | 文件源码
def plotHistPopScore(population, fitness=False):
   """ Population score distribution histogram

   Example:
      >>> Interaction.plotHistPopScore(population)

   :param population: population object (:class:`GPopulation.GPopulation`)
   :param fitness: if True, the fitness score will be used, otherwise, the raw.
   :rtype: None

   """
   score_list = getPopScores(population, fitness)
   n, bins, patches = pylab.hist(score_list, 50, facecolor='green', alpha=0.75, normed=1)
   pylab.plot(bins, pylab.normpdf(bins, numpy.mean(score_list), numpy.std(score_list)), 'r--')
   pylab.xlabel('Score')
   pylab.ylabel('Frequency')
   pylab.grid(True)
   pylab.title("Plot of population score distribution")
   pylab.show()

# -----------------------------------------------------------------
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def DrawHist(pl, shs):  
    """??????, shs: ??? array"""
    shs = np.array(shs, dtype=float)
    #print "mean: %.2f"%shs.mean()
    shs = shs[np.isnan(shs) == False]
    if len(shs)>0:
        pl.figure
        pl.hist(shs)
        def ShowHitCount(shs):
            #????
            go_count = len(shs) - len(shs[np.isnan(shs)])
            #???
            if len(shs) != 0:
                v = float(go_count)/ float(len(shs))
                #print("trade rato:%.2f%%"%(v*100))
            #?????
            if go_count>0:
                v = float(len(shs[shs>0]))/float(go_count)
                #print("win rato: %.2f%%"%(v*100))
        pl.show()
        #ShowHitCount(shs)
项目:spiking-ratslam    作者:bjkomer    | 项目源码 | 文件源码
def data_loop(self):
        import pylab
        fig = pylab.figure()
        pylab.ion()

        while True:
            fig.clear()
            #pylab.plot(self.t[np.where(self.on==0)])
            hz = 1000000 / self.delta 
            pylab.hist(hz, 50, range=(800, 1200))
            pylab.xlim(500, 1500)
            pylab.ylim(0, 100)
            self.delta = self.delta[:0]

            fig.canvas.draw()
            fig.canvas.flush_events()
项目:livespin    作者:biocompibens    | 项目源码 | 文件源码
def plotAgainstGFP_hist2d(self):
        fig1 = pylab.figure(figsize = (20, 15))
        print len(self.GFP)
        for i in xrange(min(len(data.cat), 4)):
            print len(self.GFP[self.categories == i])
            vect = []
            pylab.subplot(2,2,i+1)
            pop = self.GFP[self.categories == i]
            print "cat", i, "n pop", len(self.GFP[(self.categories == i) & (self.GFP > -np.log(12.5))])
            H, xedges, yedges = np.histogram2d(self.angles[self.categories == i], self.GFP[self.categories == i], bins = 10)
            hist = pylab.hist2d(self.GFP[self.categories == i], self.angles[self.categories == i], bins = 10, cmap = pylab.cm.Reds, normed = True)
            pylab.clim(0.,0.035)
            pylab.colorbar()
            pylab.title(data.cat[i])
            pylab.xlabel('GFP score')
            pylab.ylabel('Angle (degree)')
            pylab.xlim([-4.2, -1])
        pylab.show()
项目:sequana    作者:sequana    | 项目源码 | 文件源码
def get_mapped_read_length(self):
        """Return dataframe with read length for each read


        .. plot::

            from pylab import hist
            from sequana import sequana_data, BAM
            b = BAM(sequana_data("test.bam"))
            hist(b.get_mapped_read_length())

        """
        read_length = [read.reference_length for read in self
                       if read.is_unmapped is False]
        return read_length
项目:sequana    作者:sequana    | 项目源码 | 文件源码
def plot_gc_content(self, fontsize=16, ec="k", bins=100):
        """plot GC content histogram

        :params bins: a value for the number of bins or an array (with a copy()
            method)
        :param ec: add black contour on the bars

        .. plot::
            :include-source:

            from sequana import BAM, sequana_data
            b = BAM(sequana_data('test.bam'))
            b.plot_gc_content()

        """
        data = self.get_gc_content()
        try:
            X = np.linspace(0, 100, bins)
        except:
            X = bins.copy()

        pylab.hist(data, X, normed=True, ec=ec)
        pylab.grid(True)
        mu = pylab.mean(data)
        sigma = pylab.std(data)

        X = pylab.linspace(X.min(), X.max(), 100)
        pylab.plot(X, pylab.normpdf(X, mu, sigma), lw=2, color="r", ls="--")
        pylab.xlabel("GC content", fontsize=16)
项目:astromalign    作者:dstndstn    | 项目源码 | 文件源码
def plotfitquality(H, xe, ye, A):
    '''
    H,xe,ye from plotalignment()
    '''
    import pylab as plt
    xe /= 1000.
    ye /= 1000.
    xx = (xe[:-1] + xe[1:])/2.
    yy = (ye[:-1] + ye[1:])/2.
    XX,YY = np.meshgrid(xx, yy)
    XX = XX.ravel()
    YY = YY.ravel()
    XY = np.vstack((XX,YY)).T
    Mdist = np.sqrt(mahalanobis_distsq(XY, A.mu, A.C))
    assert(len(H.ravel()) == len(Mdist))
    mod = A.getModel(XX, YY)
    R2 = XX**2 + YY**2
    mod[R2 > (A.match.rad)**2] = 0.
    mod *= (H.sum() / mod.sum())
    plt.clf()
    rng = (0, 7)
    plt.hist(Mdist, 100, weights=H.ravel(), histtype='step', color='b', label='data', range=rng)
    plt.hist(Mdist, 100, weights=mod, histtype='step', color='r', label='model', range=rng)
    plt.xlabel('| Chi |')
    plt.ylabel('Number of matches')
    plt.title('Gaussian peak fit quality')
    plt.legend(loc='upper right')
项目:astromalign    作者:dstndstn    | 项目源码 | 文件源码
def histlog10(x, **kwargs):
    import pylab as plt
    I = (x > 0)
    L = np.log10(x[I])
    plt.clf()
    plt.hist(L, **kwargs)
项目:TPs    作者:DataMiningP7    | 项目源码 | 文件源码
def ex3():
    x = np.random.randn(1000)

    # Boxplot
    #plt.boxplot(x)

    # Histogram
    plt.hist(x)

    plt.title("Mon Titre")

    plt.show()
项目:sentisignal    作者:jonathanmanfield    | 项目源码 | 文件源码
def check_pdf(df):
    df_num = df.select_dtypes(include=[np.float, np.int])
    for index in df_num.columns:
        try:
            if index in ['LOG_BULL_RETURN', 'LOG_BEAR_RETURN','RTISf', 'TOTAL_SCANNED_MESSAGES_DIFF', 'TOTAL_SENTIMENT_MESSAGES_DIFF']:

                h = df_num[index][1:].sort_values().values
                fit = s.norm.pdf(h, np.mean(h), np.std(h))  #this is a fitting indeed

                P.plot(h,fit,'-o')
                P.hist(h,normed=True)      #use this to draw histogram of your data
                P.title(index)
                P.show()        

                # fig = sm.graphics.tsa.plot_acf(df_num[index][1:],lags=40)
                # plt.title(index)
            elif index in ['LOG_BULL_BEAR_RATIO']:

                h = df_num[index][1:].sort_values().values
                fit = s.norm.pdf(h, np.mean(h), np.std(h))  #this is a fitting indeed

                P.plot(h,fit,'-o')
                P.hist(h,normed=True)      #use this to draw histogram of your data
                P.title(index)
                P.show() 

            else: 

                h = df_num[index][1:].sort_values().values
                fit = s.norm.pdf(h, np.mean(h), np.std(h))  #this is a fitting indeed

                P.plot(h,fit,'-o')
                P.hist(h,normed=True)      #use this to draw histogram of your data
                P.title(index)
                P.show()
        except:
            print index, "error" 

# check autocorrelation
# provide a range of graphics which diagramatically show spikes for autocorrelation
项目:perf    作者:vstinner    | 项目源码 | 文件源码
def display_histogram_scipy(bench, mean, bins):
    values = bench.get_values()
    values = sorted(values)

    if mean:
        fit = stats.norm.pdf(values, bench.mean(), bench.stdev())
        pylab.plot(values, fit, '-o', label='mean-stdev')
    else:
        fit = stats.norm.pdf(values, bench.mean(), bench.stdev())
        pylab.plot(values, fit, '-o', label='mean-stdev')

    plt.legend(loc='upper right', shadow=True, fontsize='x-large')
    pylab.hist(values, bins=bins, normed=True)
    pylab.show()
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def layer(self, x, y):
        """"""
        #n = np.random.randn(1000)
        #plt.hist(n, 100)
        plt.plot(x, y, 'r')



    #----------------------------------------------------------------------
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def hist(self, *args, **kwargs):
        pl.hist(*args, **kwargs)
项目:ugali    作者:DarkEnergySurvey    | 项目源码 | 文件源码
def histogram(title, title_x, title_y,
              x, bins_x):
    """
    Plot a basic histogram.
    """
    pylab.figure()
    pylab.hist(x, bins_x)
    pylab.xlabel(title_x)
    pylab.ylabel(title_y)
    pylab.title(title)

############################################################
项目:ugali    作者:DarkEnergySurvey    | 项目源码 | 文件源码
def draw_sum_slices(hist, **kwargs):
    return draw_slices(hist,func=np.sum, **kwargs)
项目:ugali    作者:DarkEnergySurvey    | 项目源码 | 文件源码
def draw_max_slices(hist, **kwargs):
    return draw_slices(hist,func=np.max, **kwargs)
项目:Events-in-Text    作者:CrowdTruth    | 项目源码 | 文件源码
def plot_distributions(sortedlist, title):
    fit = stats.norm.pdf(sortedlist, np.mean(sortedlist), np.std(sortedlist))  #this is a fitting indeed
    pl.title(title)
    pl.plot(sortedlist,fit,'-o')

    pl.hist(sortedlist,normed=True)      #use this to draw histogram of your data
    pl.savefig(title)
    pl.show()                   #use may also need add this
项目:livespin    作者:biocompibens    | 项目源码 | 文件源码
def histplot(self, extradataA = [], extradataG = [], intensity = []):
        pylab.figure(figsize = (25,8))
        cat = ['NT, 500ng/mL DOX', 'DLG siRNA, 500ng/mL DOX', 'NuMA siRNA, 500ng/mL DOX', 'NT, 1ug/mL DOX']
        pops = []
        for i in xrange(3):
            pylab.subplot(1,3,i+1)
            pop = self.angles[(self.categories == i)]# &  (self.GFP > -np.log(12.5))]# & (intensity == 'r')]
            print "cat {0}, pop {1}, pop + GFP {2}".format(i, len(self.angles[self.categories == i]), len(pop))
            pops.append(pop)
            hist, binedges = np.histogram(pop, bins = 18)
            pylab.tick_params(axis='both', which='major', labelsize=25)
            pylab.plot(binedges[:-1], np.cumsum(hist)/1./len(pop), data.colors[i], label = data.cat[i], linewidth = 4)
            if len(extradataA) > i:
                print extradataA[i]
                h, bins = np.histogram(extradataA[i], bins= 18)
                hbis = h/1./len(extradataA[i])
                x, y = [], []
                for index in xrange(len(hbis)):
                    x.extend([bins[index], bins[index+1]])
                    y.extend([hbis[index], hbis[index]])
                print x, y, len(x)
                pylab.tick_params(axis='both', which='major', labelsize=25)
                pylab.plot(bins[:-1], np.cumsum(h)/1./len(extradataA[i]), 'k', linewidth = 4)

            pylab.xlabel("Angle (degre)", fontsize = 25)
            #pylab.title(cat[i])
            pylab.ylim([0., 1.2])
            pylab.legend(loc = 2, prop = {'size' : 20})
        for ip, p in enumerate(pops):
            for ip2, p2 in enumerate(pops):
                ksstat, kspval = scipy.stats.ks_2samp(p2, p)
                print "#### cat{0} & cat{3} : ks Stat {1}, pvalue {2}".format(ip, ksstat, kspval, ip2)
        pylab.show()
        #pylab.savefig("{0}hist.png".format(dirpath, nbins, 2, randint(0,999), dirpath))
项目:livespin    作者:biocompibens    | 项目源码 | 文件源码
def plotAgainstGFP(self, extradataA = [], extradataG = [], intensity = [], seq = []):
        fig1 = pylab.figure(figsize = (25, 10))
        print len(self.GFP)
        for i in xrange(min(len(data.cat), 3)):
            print len(self.GFP[self.categories == i])
            vect = []
            pylab.subplot(1,3,i+1)
            #pylab.hist(self.GFP[self.categories == i], bins = 20, color = data.colors[i])
            pop = self.GFP[self.categories == i]
            pylab.plot(self.GFP[self.categories == i], self.angles[self.categories == i], data.colors[i]+'o', markersize = 8)#, label = data.cat[i])
            print "cat", i, "n pop", len(self.GFP[(self.categories == i) & (self.GFP > -np.log(12.5))])
            x = np.linspace(np.min(self.GFP[self.categories == i]), np.percentile(self.GFP[self.categories == i], 80),40)
            #fig1.canvas.mpl_connect('pick_event', onpick)
            for j in x:
                vect.append(np.median(self.angles[(self.GFP > j) & (self.categories == i)]))

            pylab.plot([-4.5, -0.5], [vect[0], vect[0]], data.colors[i], label = "mediane de la population entiere", linewidth = 5)
            print vect[0], vect[np.argmax(x > -np.log(12.5))]
            pylab.plot([-np.log(12.5), -0.5], [vect[np.argmax(x > -np.log(12.5))] for k in  [0,1]], data.colors[i], label = "mediane de la population de droite", linewidth = 5, ls = '--')
            pylab.axvline(x = -np.log(12.5), color = 'm', ls = '--', linewidth = 3)
            pylab.xlim([-4.5, -0.5])
            pylab.legend(loc = 2, prop = {'size':17})

            pylab.title(data.cat[i].split(',')[0], fontsize = 24)
            pylab.xlabel('score GFP', fontsize = 20)
            pylab.ylabel('Angle (degre)', fontsize = 20)
            pylab.tick_params(axis='both', which='major', labelsize=20)
            pylab.ylim([-5, 105])
            ##pylab.xscale('log')
        pylab.show()
项目:livespin    作者:biocompibens    | 项目源码 | 文件源码
def bootstrap(self, nBoot, nbins = 20):
        pops = np.zeros((nBoot, nbins))
        #medianpop = [[] for i in data.cat]
        pylab.figure(figsize = (20,14))
        for i in xrange(3):
            pylab.subplot(1,3,i+1)
            #if  i ==0:
                #pylab.title("Bootstrap on medians", fontsize = 20.)
            pop = self.angles[(self.categories == i)]# & (self.GFP > 2000)]
            for index in xrange(nBoot):
                newpop = np.random.choice(pop, size=len(pop), replace=True)
                #medianpop[i].append(np.median(newpop))
                newhist, binedges = np.histogram(newpop, bins = nbins)
                pops[index,:] = newhist/1./len(pop)
            #pylab.hist(medianpop[i], bins = nbins, label = "{2} median {0:.1f}, std {1:.1f}".format(np.median(medianpop[i]), np.std(medianpop[i]), data.cat[i]), color = data.colors[i], alpha =.2, normed = True)

            meanpop = np.sum(pops, axis = 0)/1./nBoot
            stdY = np.std(pops, axis = 0)
            print "width", binedges[1] - binedges[0]
            pylab.bar(binedges[:-1], meanpop, width = binedges[1] - binedges[0], label = "mean distribution", color = data.colors[i], alpha = 0.6)
            pylab.fill_between((binedges[:-1]+binedges[1:])/2., meanpop-stdY, meanpop+stdY, alpha = 0.3)
            pylab.legend()
            pylab.title(data.cat[i])
            pylab.xlabel("Angle(degree)", fontsize = 15)
            pylab.ylim([-.01, 0.23])

        pylab.savefig("/users/biocomp/frose/frose/Graphics/FINALRESULTS-diff-f3/distrib_nBootstrap{0}_bins{1}_GFPsup{2}_{3}.png".format(nBoot, nbins, 'all', randint(0,999)))
项目:ugali    作者:DarkEnergySurvey    | 项目源码 | 文件源码
def draw_slices(hist, func=np.sum, **kwargs):
    """ Draw horizontal and vertical slices through histogram """
    from mpl_toolkits.axes_grid1 import make_axes_locatable
    kwargs.setdefault('ls','-')
    ax = plt.gca()

    data = hist

    # Slices
    vslice = func(data,axis=0)
    hslice = func(data,axis=1)

    npix = np.array(data.shape)
    #xlim,ylim = plt.array(zip([0,0],npix-1))
    xlim = ax.get_xlim()
    ylim = ax.get_ylim()
    #extent = ax.get_extent()
    #xlim =extent[:2]
    #ylim = extent[2:]

    # Bin centers
    xbin = np.linspace(xlim[0],xlim[1],len(vslice))#+0.5 
    ybin = np.linspace(ylim[0],ylim[1],len(hslice))#+0.5
    divider = make_axes_locatable(ax)

    #gh2 = pywcsgrid2.GridHelperSimple(wcs=self.header, axis_nums=[2, 1])
    hax = divider.append_axes("right", size=1.2, pad=0.05,sharey=ax,
                              axes_class=axes_divider.LocatableAxes)
    hax.axis["left"].toggle(label=False, ticklabels=False)
    #hax.plot(hslice, plt.arange(*ylim)+0.5,'-') # Bin center
    hax.plot(hslice, ybin, **kwargs) # Bin center
    hax.xaxis.set_major_locator(MaxNLocator(4,prune='both'))
    hax.set_ylim(*ylim)

    #gh1 = pywcsgrid2.GridHelperSimple(wcs=self.header, axis_nums=[0, 2])
    vax = divider.append_axes("top", size=1.2, pad=0.05, sharex=ax,
                              axes_class=axes_divider.LocatableAxes)
    vax.axis["bottom"].toggle(label=False, ticklabels=False)
    vax.plot(xbin, vslice, **kwargs) 
    vax.yaxis.set_major_locator(MaxNLocator(4,prune='lower'))
    vax.set_xlim(*xlim)

    return vax,hax
项目:ugali    作者:DarkEnergySurvey    | 项目源码 | 文件源码
def drawKernelHist(ax, kernel):
    ext = kernel.extension
    theta = kernel.theta
    lon, lat = kernel.lon, kernel.lat
    xmin,xmax = -5*ext,5*ext
    ymin,ymax = -5*ext,5*ext,
    x = np.linspace(xmin,xmax,100)+kernel.lon
    y = np.linspace(ymin,ymax,100)+kernel.lat

    xx,yy = np.meshgrid(x,y)
    zz = kernel.pdf(xx,yy)
    im = ax.imshow(zz)#,extent=[xmin,xmax,ymin,ymax])
    hax,vax = draw_slices(ax,zz,color='k')

    mc_lon,mc_lat = kernel.sample(1e5)
    hist,xedges,yedges = np.histogram2d(mc_lon,mc_lat,bins=[len(x),len(y)],
                                        range=[[x.min(),x.max()],[y.min(),y.max()]])
    xbins,ybins = np.arange(hist.shape[0])+0.5,np.arange(hist.shape[1])+0.5

    vzz = zz.sum(axis=0)
    hzz = zz.sum(axis=1)
    vmc = hist.sum(axis=0)
    hmc = hist.sum(axis=1)

    vscale = vzz.max()/vmc.max()
    hscale = hzz.max()/hmc.max()

    kwargs = dict(marker='.',ls='',color='r')
    hax.errorbar(hmc*hscale, ybins, xerr=np.sqrt(hmc)*hscale,**kwargs)
    vax.errorbar(xbins, vmc*vscale,yerr=np.sqrt(vmc)*vscale,**kwargs) 

    ax.set_ylim(0,len(y))
    ax.set_xlim(0,len(x))

    #try: ax.cax.colorbar(im)
    #except: pylab.colorbar(im)

    #a0 = np.array([0.,0.])
    #a1 =kernel.a*np.array([np.sin(np.deg2rad(theta)),-np.cos(np.deg2rad(theta))])
    #ax.plot([a0[0],a1[0]],[a0[1],a1[1]],'-ob')
    # 
    #b0 = np.array([0.,0.])
    #b1 =kernel.b*np.array([np.cos(np.radians(theta)),np.sin(np.radians(theta))])
    #ax.plot([b0[0],b1[0]],[b0[1],b1[1]],'-or')    

    label_kwargs = dict(xy=(0.05,0.05),xycoords='axes fraction', xytext=(0, 0), 
                        textcoords='offset points',ha='left', va='bottom',size=10,
                        bbox={'boxstyle':"round",'fc':'1'}, zorder=10)
    norm = zz.sum() * (x[1]-x[0])**2
    ax.annotate("Sum = %.2f"%norm,**label_kwargs)

    #ax.set_xlabel(r'$\Delta$ LON (deg)')
    #ax.set_ylabel(r'$\Delta$ LAT (deg)')

###################################################
项目:Kionix-IoT-Evaluation-Kit    作者:RohmSemiconductor    | 项目源码 | 文件源码
def doit(csvfile):
    sensordata=[]
    timestamplist=[]
    if 1:#with open(fname, 'rb') as csvfile:

        for t in range(args.skip_lines): csvfile.readline()

        reader = csv.reader(csvfile, delimiter=args.delimiter)
        for a in reader:

            if a==[]: continue # empty line            
            try:
                values = [float(t.replace(',','.')) for t in a if t !='']
            except Exception,e:
                print a, e
                continue

            if args.columns:
                values = [values[t] for t in args.columns]

            if args.timestamps:
                sensordata.append(values[1:])
                timestamplist.append(values[0])

            else: 
                sensordata.append(values)


        if args.histogram:
            import matplotlib.mlab as mlab
            mu = mlab.np.average(sensordata)
            sigma = max(abs(mlab.np.max(sensordata)- mu), abs(mlab.np.min(sensordata)- mu))

            # the histogram of the data
            n, bins, patches = pylab.hist(mlab.np.array(sensordata), 100, normed=True, facecolor='green', alpha=0.75)

            pylab.grid()
            pylab.show()

        if args.output_file_name:
            outfile = open(args.output_file_name,'w')
            for line in sensordata:
                outfile.write(args.output_delimiter.join([args.output_formatter % round(t*args.output_multiplier) for t in line])+'\n')
        else:

            if timestamplist!=[]: # data with timestamp
                pylab.plot(timestamplist, sensordata, args.tick_mark)
                pylab.xlabel('time')
            else:
                pylab.plot(sensordata, args.tick_mark)
                pylab.xlabel('sample #')

            pylab.title(csvfile.name)

            if args.legend:
                pylab.legend(args.legend)

            pylab.grid()
            pylab.show()