Python pylab 模块,gray() 实例源码

我们从Python开源项目中,提取了以下25个代码示例,用于说明如何使用pylab.gray()

项目:office-interoperability-tools    作者:milossramek    | 项目源码 | 文件源码
def disp(iimg, label = "", gray=False):
    """ Display an image using pylab
    """
    try:
        import pylab
        dimage = iimg.copy()
        if iimg.ndim==3:
            dimage[...,0] = iimg[...,2]
            dimage[...,2] = iimg[...,0]

        pylab.imshow(dimage, interpolation='none')
        if gray: pylab.gray()
        #pylab.gca().format_coord = format_coord
        pylab.text(1500, -30, label)
        pylab.axis('off')
        pylab.show()
    except ImportError:
        print "Module pylab not available"
项目:adversarial-autoencoder    作者:musyoku    | 项目源码 | 文件源码
def tile_images(image_batch, image_width=28, image_height=28, image_channel=1, dir=None, filename="images"):
    if dir is None:
        raise Exception()
    try:
        os.mkdir(dir)
    except:
        pass
    fig = pylab.gcf()
    fig.set_size_inches(16.0, 16.0)
    pylab.clf()
    pylab.gray()
    for m in range(100):
        pylab.subplot(10, 10, m + 1)
        pylab.imshow(image_batch[m].reshape((image_width, image_height)), interpolation="none")
        pylab.axis("off")
    pylab.savefig("{}/{}.png".format(dir, filename))
项目:chainer-adversarial-autoencoder    作者:fukuta0614    | 项目源码 | 文件源码
def visualize_reconstruction(xp, model, x, visualization_dir, epoch, gpu=False):
    x_variable = chainer.Variable(xp.asarray(x))
    _x = model.decode(model.encode(x_variable), test=True)
    _x.to_cpu()
    _x = _x.data

    fig = pylab.gcf()
    fig.set_size_inches(8.0, 8.0)
    pylab.clf()
    pylab.gray()
    for m in range(50):
        i = m / 10
        j = m % 10
        pylab.subplot(10, 10, 20 * i + j + 1, xticks=[], yticks=[])
        pylab.imshow(x[m].reshape((28, 28)), interpolation="none")
        pylab.subplot(10, 10, 20 * i + j + 10 + 1, xticks=[], yticks=[])
        pylab.imshow(_x[m].reshape((28, 28)), interpolation="none")
        # pylab.imshow(np.clip((_x_batch.data[m] + 1.0) / 2.0, 0.0, 1.0).reshape(
        # (config.img_channel, config.img_width, config.img_width)), interpolation="none")
        pylab.axis("off")
    pylab.savefig("{}/reconstruction_{}.png".format(visualization_dir, epoch))
    # pylab.show()
项目:Shoe-Shape-Classifier    作者:jrzaurin    | 项目源码 | 文件源码
def threshold_value(img):
    """
    Returns a threshold value (0.9 or 0.98) based on whether any slice
    of the image within a central box is enterely white (white is a bitch!)
    0.9 or 0.98 come simply from a lot of experimentation.
    """

    is_color = len(img.shape) == 3
    is_grey  = len(img.shape) == 2

    if is_color:
        gray =  cv2.cvtColor(gray,cv2.COLOR_BGR2GRAY)
    elif is_grey:
        gray = img.copy()

    slices = gray.mean(axis = 1)[20:gray.shape[0]-30]
    is_white = any(x > 0.9*255 for x in slices)
    if is_white:
        return 0.98
    else:
        return 0.9
项目:Shoe-Shape-Classifier    作者:jrzaurin    | 项目源码 | 文件源码
def threshold_img(img):
    """
    Simple wrap-up function for cv2.threshold()
    """

    is_color = len(img.shape) == 3
    is_grey  = len(img.shape) == 2

    t = threshold_value(img)

    if is_color:
        gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    elif is_grey:
        gray = img.copy()

    blurred = cv2.GaussianBlur(gray, (3, 3), 0)
    (_, thresh) = cv2.threshold(blurred, t*255, 1, cv2.THRESH_BINARY_INV)

    return thresh
项目:Shoe-Shape-Classifier    作者:jrzaurin    | 项目源码 | 文件源码
def threshold_img(img):
    """
    Simple wrap-up function for cv2.threshold()
    """

    is_color = len(img.shape) == 3
    is_grey  = len(img.shape) == 2

    t = threshold_value(img)

    if is_color:
        gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    elif is_grey:
        gray = img.copy()

    blurred = cv2.GaussianBlur(gray, (3, 3), 0)
    (_, thresh) = cv2.threshold(blurred, t*255, 1, cv2.THRESH_BINARY_INV)

    return thresh
项目:unrolled-gan    作者:musyoku    | 项目源码 | 文件源码
def tile_binary_images(x, dir=None, filename="x", row=10, col=10):
    if dir is None:
        raise Exception()
    try:
        os.mkdir(dir)
    except:
        pass
    fig = pylab.gcf()
    fig.set_size_inches(col * 2, row * 2)
    pylab.clf()
    pylab.gray()
    for m in range(row * col):
        pylab.subplot(row, col, m + 1)
        pylab.imshow(np.clip(x[m], 0, 1), interpolation="none")
        pylab.axis("off")
    pylab.savefig("{}/{}.png".format(dir, filename))
项目:LSGAN    作者:musyoku    | 项目源码 | 文件源码
def tile_binary_images(x, dir=None, filename="x", row=10, col=10):
    if dir is None:
        raise Exception()
    try:
        os.mkdir(dir)
    except:
        pass
    fig = pylab.gcf()
    fig.set_size_inches(col * 2, row * 2)
    pylab.clf()
    pylab.gray()
    for m in range(row * col):
        pylab.subplot(row, col, m + 1)
        pylab.imshow(np.clip(x[m], 0, 1), interpolation="none")
        pylab.axis("off")
    pylab.savefig("{}/{}.png".format(dir, filename))
项目:adgm    作者:musyoku    | 项目源码 | 文件源码
def tile_binary_images(x, dir=None, filename="x"):
    if dir is None:
        raise Exception()
    try:
        os.mkdir(dir)
    except:
        pass
    fig = pylab.gcf()
    fig.set_size_inches(16.0, 16.0)
    pylab.clf()
    pylab.gray()
    for m in range(100):
        pylab.subplot(10, 10, m + 1)
        pylab.imshow(np.clip(x[m], 0, 1), interpolation="none")
        pylab.axis("off")
    pylab.savefig("{}/{}.png".format(dir, filename))
项目:variational-autoencoder    作者:musyoku    | 项目源码 | 文件源码
def visualize_x(reconstructed_x_batch, image_width=28, image_height=28, image_channel=1, dir=None):
    if dir is None:
        raise Exception()
    try:
        os.mkdir(dir)
    except:
        pass
    fig = pylab.gcf()
    fig.set_size_inches(16.0, 16.0)
    pylab.clf()
    if image_channel == 1:
        pylab.gray()
    for m in range(100):
        pylab.subplot(10, 10, m + 1)
        if image_channel == 1:
            pylab.imshow(reconstructed_x_batch[m].reshape((image_width, image_height)), interpolation="none")
        elif image_channel == 3:
            pylab.imshow(reconstructed_x_batch[m].reshape((image_channel, image_width, image_height)), interpolation="none")
        pylab.axis("off")
    pylab.savefig("%s/reconstructed_x.png" % dir)
项目:Shoe-Shape-Classifier    作者:jrzaurin    | 项目源码 | 文件源码
def bounding_box(img):
    """
    Returns right, left, lower and upper limits for the limiting box enclosing
    the item (shoe, dress). Note that given the shapes and colors of some items,
    finding the contours and compute the bounding box is not a viable solution.
    """

    is_color = len(img.shape) == 3
    is_grey  = len(img.shape) == 2

    if is_color:
        gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    elif is_grey:
        gray = img.copy()

    slices = gray.mean(axis = 1)[20:gray.shape[0]-30]
    is_white = any(x > 0.9*255 for x in slices)

    if (is_white):
        h1 = min(np.apply_along_axis(get_edges, axis=0, arr=gray , thresh = 0.98)[0,:])
        h2 = max(np.apply_along_axis(get_edges, axis=0, arr=gray , thresh = 0.98)[1,:])
        w1 = min(np.apply_along_axis(get_edges, axis=1, arr=gray , thresh = 0.98)[:,0])
        w2 = max(np.apply_along_axis(get_edges, axis=1, arr=gray , thresh = 0.98)[:,1])
    else :
        h1 = min(np.apply_along_axis(get_edges, axis=0, arr=gray , thresh = 0.9)[0,:])
        h2 = max(np.apply_along_axis(get_edges, axis=0, arr=gray , thresh = 0.9)[1,:])
        w1 = min(np.apply_along_axis(get_edges, axis=1, arr=gray , thresh = 0.9)[:,0])
        w2 = max(np.apply_along_axis(get_edges, axis=1, arr=gray , thresh = 0.9)[:,1])

    return w1, w2, h1, h2
项目:Shoe-Shape-Classifier    作者:jrzaurin    | 项目源码 | 文件源码
def shape_df(img, axis, nsteps):
    """
    Returns a data frame with the initial and end points enclosing the product
    in the image, across the x/y axis. Why a dataframe and not tuples? just for
    convenience.
    """

    is_color = len(img.shape) == 3
    is_grey  = len(img.shape) == 2

    if is_color:
        gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    elif is_grey:
        gray = img.copy()

    edges = bounding_box(gray)
    gray_c = gray[edges[2]:edges[3]+1, edges[0]:edges[1]+1]
    thr = threshold_value(gray_c)

    if axis == 'x' :
        cuts = np.rint(np.linspace(5, gray_c.shape[1]-1, nsteps, endpoint=True)).astype(int)

        init = np.apply_along_axis(get_edges, 0, arr = gray_c, thresh = thr)[0,:][cuts]
        end  = np.apply_along_axis(get_edges, 0, arr = gray_c, thresh = thr)[1,:][cuts]

        df = pd.DataFrame(data = {'coord' : cuts, 'init' : init, 'end' : end},
                          columns=['coord', 'init', 'end'])

    elif axis == 'y':
        cuts = np.round(np.linspace(4, gray_c.shape[0]-1, nsteps, endpoint=True)).astype(int)

        init = np.apply_along_axis(get_edges, 1, arr = gray_c, thresh = thr)[:,0][cuts]
        end  = np.apply_along_axis(get_edges, 1, arr = gray_c, thresh = thr)[:,1][cuts]

        df = pd.DataFrame(data = {'coord' : cuts, 'init' : init, 'end' : end},
                          columns=['coord', 'init', 'end'])

    return df
项目:Shoe-Shape-Classifier    作者:jrzaurin    | 项目源码 | 文件源码
def plot_shape(img, axis, df=None, nsteps=None):
    """
    function to overplot the shape points onto the image img
    """

    if df is not None and nsteps:
        print 'Error: provide data frame or nsteps, not both'
        return None

    if df is not None:
        edges = bounding_box(img)
        img_c = img[edges[2]:edges[3]+1, edges[0]:edges[1]+1]
        pyl.figure()
        pyl.gray()
        pyl.imshow(img_c)
        if axis == 'y':
            pyl.plot(df.init,df.coord, 'r*')
            pyl.plot(df.end, df.coord, 'r*')
            pyl.show()
        if axis == 'x':
            pyl.plot(df.coord,df.init, 'r*')
            pyl.plot(df.coord,df.end, 'r*')
            pyl.show()

    elif nsteps:
        pyl.figure()
        pyl.gray()
        pyl.imshow(img)
        if axis == 'y':
            df = shape_df(img, 'y', nsteps)
            pyl.plot(df.init,df.coord, 'r*')
            pyl.plot(df.end, df.coord, 'r*')
            pyl.show()
        if axis == 'x':
            df = shape_df(img, 'x', nsteps)
            pyl.plot(df.coord,df.init, 'r*')
            pyl.plot(df.coord,df.end, 'r*')
            pyl.show()
项目:Shoe-Shape-Classifier    作者:jrzaurin    | 项目源码 | 文件源码
def bounding_box(img):
    """
    Returns right, left, lower and upper limits for the limiting box enclosing
    the item (shoe, dress). Note that given the shapes and colors of some items,
    finding the contours and compute the bounding box is not a viable solution.
    """

    is_color = len(img.shape) == 3
    is_grey  = len(img.shape) == 2

    if is_color:
        gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    elif is_grey:
        gray = img.copy()

    slices = gray.mean(axis = 1)[20:gray.shape[0]-30]
    is_white = any(x > 0.9*255 for x in slices)

    if (is_white):
        h1 = min(np.apply_along_axis(get_edges, axis=0, arr=gray , thresh = 0.98)[0,:])
        h2 = max(np.apply_along_axis(get_edges, axis=0, arr=gray , thresh = 0.98)[1,:])
        w1 = min(np.apply_along_axis(get_edges, axis=1, arr=gray , thresh = 0.98)[:,0])
        w2 = max(np.apply_along_axis(get_edges, axis=1, arr=gray , thresh = 0.98)[:,1])
    else :
        h1 = min(np.apply_along_axis(get_edges, axis=0, arr=gray , thresh = 0.9)[0,:])
        h2 = max(np.apply_along_axis(get_edges, axis=0, arr=gray , thresh = 0.9)[1,:])
        w1 = min(np.apply_along_axis(get_edges, axis=1, arr=gray , thresh = 0.9)[:,0])
        w2 = max(np.apply_along_axis(get_edges, axis=1, arr=gray , thresh = 0.9)[:,1])

    return w1, w2, h1, h2
项目:Shoe-Shape-Classifier    作者:jrzaurin    | 项目源码 | 文件源码
def shape_df(img, axis, nsteps):
    """
    Returns a data frame with the initial and end points enclosing the product
    in the image, across the x/y axis. Why a dataframe and not tuples? just for
    convenience.
    """

    is_color = len(img.shape) == 3
    is_grey  = len(img.shape) == 2

    if is_color:
        gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    elif is_grey:
        gray = img.copy()

    edges = bounding_box(gray)
    gray_c = gray[edges[2]:edges[3]+1, edges[0]:edges[1]+1]
    thr = threshold_value(gray_c)

    if axis == 'x' :
        cuts = np.rint(np.linspace(5, gray_c.shape[1]-1, nsteps, endpoint=True)).astype(int)

        init = np.apply_along_axis(get_edges, 0, arr = gray_c, thresh = thr)[0,:][cuts]
        end  = np.apply_along_axis(get_edges, 0, arr = gray_c, thresh = thr)[1,:][cuts]

        df = pd.DataFrame(data = {'coord' : cuts, 'init' : init, 'end' : end},
                          columns=['coord', 'init', 'end'])

    elif axis == 'y':
        cuts = np.round(np.linspace(4, gray_c.shape[0]-1, nsteps, endpoint=True)).astype(int)

        init = np.apply_along_axis(get_edges, 1, arr = gray_c, thresh = thr)[:,0][cuts]
        end  = np.apply_along_axis(get_edges, 1, arr = gray_c, thresh = thr)[:,1][cuts]

        df = pd.DataFrame(data = {'coord' : cuts, 'init' : init, 'end' : end},
                          columns=['coord', 'init', 'end'])

    return df
项目:Shoe-Shape-Classifier    作者:jrzaurin    | 项目源码 | 文件源码
def plot_shape(img, axis, df=None, nsteps=None):
    """
    function to overplot the shape points onto the image img
    """

    if df is not None and nsteps:
        print 'Error: provide data frame or nsteps, not both'
        return None

    if df is not None:
        edges = bounding_box(img)
        img_c = img[edges[2]:edges[3]+1, edges[0]:edges[1]+1]
        pyl.figure()
        pyl.gray()
        pyl.imshow(img_c)
        if axis == 'y':
            pyl.plot(df.init,df.coord, 'r*')
            pyl.plot(df.end, df.coord, 'r*')
            pyl.show()
        if axis == 'x':
            pyl.plot(df.coord,df.init, 'r*')
            pyl.plot(df.coord,df.end, 'r*')
            pyl.show()

    elif nsteps:
        pyl.figure()
        pyl.gray()
        pyl.imshow(img)
        if axis == 'y':
            df = shape_df(img, 'y', nsteps)
            pyl.plot(df.init,df.coord, 'r*')
            pyl.plot(df.end, df.coord, 'r*')
            pyl.show()
        if axis == 'x':
            df = shape_df(img, 'x', nsteps)
            pyl.plot(df.coord,df.init, 'r*')
            pyl.plot(df.coord,df.end, 'r*')
            pyl.show()
项目:hco-experiments    作者:zooniverse    | 项目源码 | 文件源码
def visualiseObject(self, cmap="hot"):
        pylab.ion()
        #pylab.set_cmap("gray")
        pylab.gray()
        pylab.title("image: %s" % self.fitsFile)
        pylab.imshow(self.getObject(), interpolation="nearest", cmap=cmap)
        pylab.colorbar()
        pylab.ylim(-1, 2*self.extent)
        pylab.xlim(-1, 2*self.extent)
        pylab.xlabel("Pixels")
        pylab.ylabel("Pixels")
        pylab.show()
项目:hco-experiments    作者:zooniverse    | 项目源码 | 文件源码
def visualiseObject(self, cmap="hot"):
        pylab.ion()
        #pylab.set_cmap("gray")
        pylab.gray()
        pylab.title("image: %s" % self.fitsFile)
        pylab.imshow(self.getObject(), interpolation="nearest", cmap=cmap)
        pylab.colorbar()
        pylab.ylim(-1, 2*self.extent)
        pylab.xlim(-1, 2*self.extent)
        pylab.xlabel("Pixels")
        pylab.ylabel("Pixels")
        pylab.show()
项目:adversarial-autoencoder    作者:musyoku    | 项目源码 | 文件源码
def plot_analogy():
    dataset_train, dataset_test = chainer.datasets.get_mnist()
    images_train, labels_train = dataset_train._datasets
    images_test, labels_test = dataset_test._datasets
    dataset_indices = np.arange(0, len(images_test))
    np.random.shuffle(dataset_indices)

    model = Model()
    assert model.load("model.hdf5")

    # normalize
    images_train = (images_train - 0.5) * 2
    images_test = (images_test - 0.5) * 2

    num_analogies = 10
    pylab.gray()

    batch_indices = dataset_indices[:num_analogies]
    x_batch = images_test[batch_indices]
    y_batch = labels_test[batch_indices]
    y_onehot_batch = onehot(y_batch)

    with chainer.no_backprop_mode() and chainer.using_config("train", False):
        z_batch = model.encode_x_yz(x_batch)[1].data

        # plot original image on the left
        x_batch = (x_batch + 1.0) / 2.0
        for m in range(num_analogies):
            pylab.subplot(num_analogies, 10 + 2, m * 12 + 1)
            pylab.imshow(x_batch[m].reshape((28, 28)), interpolation="none")
            pylab.axis("off")

        all_y = np.identity(10, dtype=np.float32)
        for m in range(num_analogies):
            # copy z_batch as many as the number of classes
            fixed_z = np.repeat(z_batch[m].reshape(1, -1), 10, axis=0)
            gen_x = model.decode_yz_x(all_y, fixed_z).data
            gen_x = (gen_x + 1.0) / 2.0
            # plot images generated from each label
            for n in range(10):
                pylab.subplot(num_analogies, 10 + 2, m * 12 + 3 + n)
                pylab.imshow(gen_x[n].reshape((28, 28)), interpolation="none")
                pylab.axis("off")

    fig = pylab.gcf()
    fig.set_size_inches(num_analogies, 10)
    pylab.savefig("analogy.png")
项目:adversarial-autoencoder    作者:musyoku    | 项目源码 | 文件源码
def plot_analogy():
    dataset_train, dataset_test = chainer.datasets.get_mnist()
    images_train, labels_train = dataset_train._datasets
    images_test, labels_test = dataset_test._datasets
    dataset_indices = np.arange(0, len(images_test))
    np.random.shuffle(dataset_indices)

    model = Model()
    assert model.load("model.hdf5")

    # normalize
    images_train = (images_train - 0.5) * 2
    images_test = (images_test - 0.5) * 2

    num_analogies = 10
    pylab.gray()

    batch_indices = dataset_indices[:num_analogies]
    x_batch = images_test[batch_indices]
    y_batch = labels_test[batch_indices]
    y_onehot_batch = onehot(y_batch)

    with chainer.no_backprop_mode() and chainer.using_config("train", False):
        z_batch = model.encode_x_yz(x_batch)[1].data

        # plot original image on the left
        x_batch = (x_batch + 1.0) / 2.0
        for m in range(num_analogies):
            pylab.subplot(num_analogies, 10 + 2, m * 12 + 1)
            pylab.imshow(x_batch[m].reshape((28, 28)), interpolation="none")
            pylab.axis("off")

        all_y = np.identity(10, dtype=np.float32)
        for m in range(num_analogies):
            # copy z_batch as many as the number of classes
            fixed_z = np.repeat(z_batch[m].reshape(1, -1), 10, axis=0)
            representation = model.encode_yz_representation(all_y, fixed_z)
            gen_x = model.decode_representation_x(representation).data
            gen_x = (gen_x + 1.0) / 2.0
            # plot images generated from each label
            for n in range(10):
                pylab.subplot(num_analogies, 10 + 2, m * 12 + 3 + n)
                pylab.imshow(gen_x[n].reshape((28, 28)), interpolation="none")
                pylab.axis("off")

    fig = pylab.gcf()
    fig.set_size_inches(num_analogies, 10)
    pylab.savefig("analogy.png")
项目:adversarial-autoencoder    作者:musyoku    | 项目源码 | 文件源码
def plot_analogy():
    dataset_train, dataset_test = chainer.datasets.get_mnist()
    images_train, labels_train = dataset_train._datasets
    images_test, labels_test = dataset_test._datasets
    dataset_indices = np.arange(0, len(images_test))
    np.random.shuffle(dataset_indices)

    model = Model()
    assert model.load("model.hdf5")

    # normalize
    images_train = (images_train - 0.5) * 2
    images_test = (images_test - 0.5) * 2

    num_analogies = 10
    pylab.gray()

    batch_indices = dataset_indices[:num_analogies]
    x_batch = images_test[batch_indices]
    y_batch = labels_test[batch_indices]
    y_onehot_batch = onehot(y_batch)

    with chainer.no_backprop_mode() and chainer.using_config("train", False):
        z_batch = model.encode_x_z(x_batch).data

        # plot original image on the left
        x_batch = (x_batch + 1.0) / 2.0
        for m in range(num_analogies):
            pylab.subplot(num_analogies, 10 + 2, m * 12 + 1)
            pylab.imshow(x_batch[m].reshape((28, 28)), interpolation="none")
            pylab.axis("off")

        all_y = np.identity(10, dtype=np.float32)
        for m in range(num_analogies):
            # copy z_batch as many as the number of classes
            fixed_z = np.repeat(z_batch[m].reshape(1, -1), 10, axis=0)
            gen_x = model.decode_yz_x(all_y, fixed_z).data
            gen_x = (gen_x + 1.0) / 2.0
            # plot images generated from each label
            for n in range(10):
                pylab.subplot(num_analogies, 10 + 2, m * 12 + 3 + n)
                pylab.imshow(gen_x[n].reshape((28, 28)), interpolation="none")
                pylab.axis("off")

    fig = pylab.gcf()
    fig.set_size_inches(num_analogies, 10)
    pylab.savefig("analogy.png")
项目:adversarial-autoencoder    作者:musyoku    | 项目源码 | 文件源码
def plot_clusters():
    dataset_train, dataset_test = chainer.datasets.get_mnist()
    images_train, labels_train = dataset_train._datasets
    images_test, labels_test = dataset_test._datasets
    dataset_indices = np.arange(0, len(images_test))
    np.random.shuffle(dataset_indices)

    model = Model()
    assert model.load("model.hdf5")

    # normalize
    images_train = (images_train - 0.5) * 2
    images_test = (images_test - 0.5) * 2

    num_clusters = model.ndim_y
    num_plots_per_cluster = 11
    image_width = 28
    image_height = 28
    ndim_x = image_width * image_height
    pylab.gray()

    with chainer.no_backprop_mode() and chainer.using_config("train", False):
        # plot cluster head
        head_y = np.identity(model.ndim_y, dtype=np.float32)
        zero_z = np.zeros((model.ndim_y, model.ndim_z), dtype=np.float32)
        head_x = model.decode_yz_x(head_y, zero_z).data
        head_x = (head_x + 1.0) / 2.0
        for n in range(num_clusters):
            pylab.subplot(num_clusters, num_plots_per_cluster + 2, n * (num_plots_per_cluster + 2) + 1)
            pylab.imshow(head_x[n].reshape((image_width, image_height)), interpolation="none")
            pylab.axis("off")

        # plot elements in cluster
        counts = [0 for i in range(num_clusters)]
        indices = np.arange(len(images_test))
        np.random.shuffle(indices)
        batchsize = 500

        i = 0
        x_batch = np.zeros((batchsize, ndim_x), dtype=np.float32)
        for n in range(len(images_test) // batchsize):
            for b in range(batchsize):
                x_batch[b] = images_test[indices[i]]
                i += 1
            y_batch = model.encode_x_yz(x_batch)[0].data
            labels = np.argmax(y_batch, axis=1)
            for m in range(labels.size):
                cluster = int(labels[m])
                counts[cluster] += 1
                if counts[cluster] <= num_plots_per_cluster:
                    x = (x_batch[m] + 1.0) / 2.0
                    pylab.subplot(num_clusters, num_plots_per_cluster + 2, cluster * (num_plots_per_cluster + 2) + 2 + counts[cluster])
                    pylab.imshow(x.reshape((image_width, image_height)), interpolation="none")
                    pylab.axis("off")

        fig = pylab.gcf()
        fig.set_size_inches(num_plots_per_cluster, num_clusters)
        pylab.savefig("clusters.png")
项目:QScode    作者:PierreHao    | 项目源码 | 文件源码
def implot(result):
    pylab.figure(0)
    pylab.gray()
    plt.subplot(3,5,1)
    plt.axis('off')
    plt.imshow(result[0][:,:,(2,1,0)])
    plt.subplot(3,5,2)
    plt.axis('off')
    plt.imshow(result[1][:,:,(2,1,0)])
    plt.subplot(3,5,3)
    plt.axis('off')
    plt.imshow(result[2][:,:,(2,1,0)])
    plt.subplot(3,5,4)
    plt.axis('off')
    plt.imshow(result[3][:,:,(2,1,0)])
    plt.subplot(3,5,5)
    plt.axis('off')
    plt.imshow(result[4][:,:,(2,1,0)])
    plt.subplot(3,5,6)
    plt.axis('off')
    plt.imshow(result[5][:,:,(2,1,0)])
    plt.subplot(3,5,7)
    plt.axis('off')
    plt.imshow(result[6][:,:,(2,1,0)])
    plt.subplot(3,5,8)
    plt.axis('off')
    plt.imshow(result[7][:,:,(2,1,0)])
    plt.subplot(3,5,9)
    plt.axis('off')
    plt.imshow(result[8][:,:,(2,1,0)])
    plt.subplot(3,5,10)
    plt.axis('off')
    plt.imshow(result[9][:,:,(2,1,0)])
    plt.subplot(3,5,11)
    plt.axis('off')
    plt.imshow(result[10][:,:,(2,1,0)])
    plt.subplot(3,5,12)
    plt.axis('off')
    plt.imshow(result[11][:,:,(2,1,0)])
    plt.subplot(3,5,13)
    plt.axis('off')
    plt.imshow(result[12][:,:,(2,1,0)])
    plt.subplot(3,5,14)
    plt.axis('off')
    plt.imshow(result[13][:,:,(2,1,0)])
    plt.subplot(3,5,15)
    plt.axis('off')
    plt.imshow(result[14][:,:,(2,1,0)])
项目:QScode    作者:PierreHao    | 项目源码 | 文件源码
def plot(result, i, directory = 'save'):
    pylab.figure(0)
    pylab.gray()
    plt.subplot(3,5,1)
    plt.axis('off')
    plt.imshow(result[0][:,:,(2,1,0)])
    plt.subplot(3,5,2)
    plt.axis('off')
    plt.imshow(result[1][:,:,(2,1,0)])
    plt.subplot(3,5,3)
    plt.axis('off')
    plt.imshow(result[2][:,:,(2,1,0)])
    plt.subplot(3,5,4)
    plt.axis('off')
    plt.imshow(result[3][:,:,(2,1,0)])
    plt.subplot(3,5,5)
    plt.axis('off')
    plt.imshow(result[4][:,:,(2,1,0)])
    plt.subplot(3,5,6)
    plt.axis('off')
    plt.imshow(result[5][:,:,(2,1,0)])
    plt.subplot(3,5,7)
    plt.axis('off')
    plt.imshow(result[6][:,:,(2,1,0)])
    plt.subplot(3,5,8)
    plt.axis('off')
    plt.imshow(result[7][:,:,(2,1,0)])
    plt.subplot(3,5,9)
    plt.axis('off')
    plt.imshow(result[8][:,:,(2,1,0)])
    plt.subplot(3,5,10)
    plt.axis('off')
    plt.imshow(result[9][:,:,(2,1,0)])
    plt.subplot(3,5,11)
    plt.axis('off')
    plt.imshow(result[10][:,:,(2,1,0)])
    plt.subplot(3,5,12)
    plt.axis('off')
    plt.imshow(result[11][:,:,(2,1,0)])
    plt.subplot(3,5,13)
    plt.axis('off')
    plt.imshow(result[12][:,:,(2,1,0)])
    plt.subplot(3,5,14)
    plt.axis('off')
    plt.imshow(result[13][:,:,(2,1,0)])
    plt.subplot(3,5,15)
    plt.axis('off')
    plt.imshow(result[14][:,:,(2,1,0)])
    plt.savefig(directory+'/'+str(i)+'.jpg')
项目:QScode    作者:PierreHao    | 项目源码 | 文件源码
def implot(result):
    pylab.figure(0)
    pylab.gray()
    plt.subplot(3,5,1)
    plt.axis('off')
    plt.imshow(result[0][:,:,(2,1,0)])
    plt.subplot(3,5,2)
    plt.axis('off')
    plt.imshow(result[1][:,:,(2,1,0)])
    plt.subplot(3,5,3)
    plt.axis('off')
    plt.imshow(result[2][:,:,(2,1,0)])
    plt.subplot(3,5,4)
    plt.axis('off')
    plt.imshow(result[3][:,:,(2,1,0)])
    plt.subplot(3,5,5)
    plt.axis('off')
    plt.imshow(result[4][:,:,(2,1,0)])
    plt.subplot(3,5,6)
    plt.axis('off')
    plt.imshow(result[5][:,:,(2,1,0)])
    plt.subplot(3,5,7)
    plt.axis('off')
    plt.imshow(result[6][:,:,(2,1,0)])
    plt.subplot(3,5,8)
    plt.axis('off')
    plt.imshow(result[7][:,:,(2,1,0)])
    plt.subplot(3,5,9)
    plt.axis('off')
    plt.imshow(result[8][:,:,(2,1,0)])
    plt.subplot(3,5,10)
    plt.axis('off')
    plt.imshow(result[9][:,:,(2,1,0)])
    plt.subplot(3,5,11)
    plt.axis('off')
    plt.imshow(result[10][:,:,(2,1,0)])
    plt.subplot(3,5,12)
    plt.axis('off')
    plt.imshow(result[11][:,:,(2,1,0)])
    plt.subplot(3,5,13)
    plt.axis('off')
    plt.imshow(result[12][:,:,(2,1,0)])
    plt.subplot(3,5,14)
    plt.axis('off')
    plt.imshow(result[13][:,:,(2,1,0)])
    plt.subplot(3,5,15)
    plt.axis('off')
    plt.imshow(result[14][:,:,(2,1,0)])