我们从Python开源项目中,提取了以下14个代码示例,用于说明如何使用pylab.rcParams()。
def ezrc(fontSize=22., lineWidth=2., labelSize=None, tickmajorsize=10, tickminorsize=5, figsize=(8, 6)): """ slides - Define params to make pretty fig for slides """ from pylab import rc, rcParams if labelSize is None: labelSize = fontSize + 5 rc('figure', figsize=figsize) rc('lines', linewidth=lineWidth) rcParams['grid.linewidth'] = lineWidth rcParams['font.sans-serif'] = ['Helvetica'] rcParams['font.serif'] = ['Helvetica'] rcParams['font.family'] = ['Times New Roman'] rc('font', size=fontSize, family='serif', weight='bold') rc('axes', linewidth=lineWidth, labelsize=labelSize) rc('legend', borderpad=0.1, markerscale=1., fancybox=False) rc('text', usetex=True) rc('image', aspect='auto') rc('ps', useafm=True, fonttype=3) rcParams['xtick.major.size'] = tickmajorsize rcParams['xtick.minor.size'] = tickminorsize rcParams['ytick.major.size'] = tickmajorsize rcParams['ytick.minor.size'] = tickminorsize rcParams['text.latex.preamble'] = ["\\usepackage{amsmath}"]
def get_rcParams(self): """Get an rcParams dict for this theme. Notes ----- Subclasses should not need to override this method method as long as self._rcParams is constructed properly. rcParams are used during plotting. Sometimes the same theme can be achieved by setting rcParams before plotting or a post_plot_callback after plotting. The choice of how to implement it is is a matter of convenience in that case. There are certain things can only be themed after plotting. There may not be an rcParam to control the theme or the act of plotting may cause an entity to come into existence before it can be themed. """ rcParams = deepcopy(self._rcParams) return rcParams
def plot_pairplots(data, labels, alpha, mis, column_label, topk=5, prefix='', focus=''): cmap = sns.cubehelix_palette(as_cmap=True, light=.9) plt.rcParams.update({'font.size': 32}) m, nv = mis.shape for j in range(m): inds = np.where(np.logical_and(alpha[j] > 0, mis[j] > 0.))[0] inds = inds[np.argsort(- alpha[j, inds] * mis[j, inds])][:topk] if focus in column_label: ifocus = column_label.index(focus) if not ifocus in inds: inds = np.insert(inds, 0, ifocus) if len(inds) >= 2: plt.clf() subdata = data[:, inds] columns = [column_label[i] for i in inds] subdata = pd.DataFrame(data=subdata, columns=columns) try: sns.pairplot(subdata, kind="reg", diag_kind="kde", size=5, dropna=True) filename = '{}/pairplots_regress/group_num={}.pdf'.format(prefix, j) if not os.path.exists(os.path.dirname(filename)): os.makedirs(os.path.dirname(filename)) plt.suptitle("Latent factor {}".format(j), y=1.01) plt.savefig(filename, bbox_inches='tight') plt.clf() except: pass subdata['Latent factor'] = labels[:,j] try: sns.pairplot(subdata, kind="scatter", dropna=True, vars=subdata.columns.drop('Latent factor'), hue="Latent factor", diag_kind="kde", size=5) filename = '{}/pairplots/group_num={}.pdf'.format(prefix, j) if not os.path.exists(os.path.dirname(filename)): os.makedirs(os.path.dirname(filename)) plt.suptitle("Latent factor {}".format(j), y=1.01) plt.savefig(filename, bbox_inches='tight') plt.close('all') except: pass
def show_annotations(self, pic_path, annotations): if self.are_legal_anotations(annotations): pylab.rcParams['figure.figsize'] = (10.0, 8.0) read_img = io.imread(pic_path) plt.figure() plt.imshow(read_img) self.coco.showAnns(annotations) else: print 'cannot show invalid annotation'
def theme(ax=None, minorticks=False): """ update plot to make it nice and uniform """ from matplotlib.ticker import AutoMinorLocator from pylab import rcParams, gca, tick_params if minorticks: if ax is None: ax = gca() ax.yaxis.set_minor_locator(AutoMinorLocator()) ax.xaxis.set_minor_locator(AutoMinorLocator()) tick_params(which='both', width=rcParams['lines.linewidth'])
def apply(self): self._rcstate = deepcopy(plt.rcParams) plt.rcParams.update(**self.get_rcParams())
def restore(self): plt.rcParams.update(self._rcstate)
def __exit__(self, *args, **kwargs): self.post_callback() plt.rcParams.update(self._rcstate)
def __init__(self, fontSize=16., lineWidth=1., labelSize=None, tickmajorsize=10, tickminorsize=5, figsize=(8, 6)): if labelSize is None: labelSize = fontSize + 2 rcParams = {} rcParams['figure.figsize'] = figsize rcParams['lines.linewidth'] = lineWidth rcParams['grid.linewidth'] = lineWidth rcParams['font.sans-serif'] = ['Helvetica'] rcParams['font.serif'] = ['Helvetica'] rcParams['font.family'] = ['Times New Roman'] rcParams['font.size'] = fontSize rcParams['font.family'] = 'serif' rcParams['font.weight'] = 'bold' rcParams['axes.linewidth'] = lineWidth rcParams['axes.labelsize'] = labelSize rcParams['legend.borderpad'] = 0.1 rcParams['legend.markerscale'] = 1. rcParams['legend.fancybox'] = False rcParams['text.usetex'] = True rcParams['image.aspect'] = 'auto' rcParams['ps.useafm'] = True rcParams['ps.fonttype'] = 3 rcParams['xtick.major.size'] = tickmajorsize rcParams['xtick.minor.size'] = tickminorsize rcParams['ytick.major.size'] = tickmajorsize rcParams['ytick.minor.size'] = tickminorsize rcParams['text.latex.preamble'] = ["\\usepackage{amsmath}"] super(self.__class__, self).__init__(**rcParams) plt.ion()
def __init__(self, fontSize=None, labelSize=None): rcParams = {} if fontSize is not None: if labelSize is None: labelSize = fontSize rcParams['font.sans-serif'] = ['Helvetica'] rcParams['font.serif'] = ['Helvetica'] rcParams['font.family'] = ['Times New Roman'] rcParams['font.size'] = fontSize rcParams["axes.labelsize"] = labelSize rcParams["axes.titlesize"] = labelSize rcParams["xtick.labelsize"] = labelSize rcParams["ytick.labelsize"] = labelSize rcParams["legend.fontsize"] = fontSize rcParams['font.family'] = 'serif' rcParams['font.weight'] = 'bold' rcParams['axes.labelsize'] = labelSize rcParams['text.usetex'] = True rcParams['ps.useafm'] = True rcParams['ps.fonttype'] = 3 rcParams['text.latex.preamble'] = ["\\usepackage{amsmath}"] super(self.__class__, self).__init__(**rcParams) plt.ion()
def main(): HASH_IMG_NAME = True pylab.rcParams['figure.figsize'] = (10.0, 8.0) json.encoder.FLOAT_REPR = lambda o: format(o, '.3f') parser = argparse.ArgumentParser() parser.add_argument("-i", "--inputfile", type=str, required=True, help='File containing model-generated/hypothesis sentences.') parser.add_argument("-r", "--references", type=str, required=True, help='JSON File containing references/groundtruth sentences.') args = parser.parse_args() prediction_file = args.inputfile reference_file = args.references json_predictions_file = '{0}.json'.format(prediction_file) crf = CocoResFormat() crf.read_file(prediction_file, HASH_IMG_NAME) crf.dump_json(json_predictions_file) # create coco object and cocoRes object. coco = COCO(reference_file) cocoRes = coco.loadRes(json_predictions_file) # create cocoEval object. cocoEval = COCOEvalCap(coco, cocoRes) # evaluate results cocoEval.evaluate() # print output evaluation scores for metric, score in cocoEval.eval.items(): print '%s: %.3f'%(metric, score)
def plot_rels(data, labels=None, colors=None, outfile="rels", latent=None, alpha=0.8, title=''): ns, n = data.shape if labels is None: labels = map(str, range(n)) ncol = 5 nrow = int(np.ceil(float(n * (n - 1) / 2) / ncol)) fig, axs = pylab.subplots(nrow, ncol) fig.set_size_inches(5 * ncol, 5 * nrow) pairs = list(combinations(range(n), 2)) if colors is not None: colors = (colors - np.min(colors)) / (np.max(colors) - np.min(colors)) for ax, pair in zip(axs.flat, pairs): diff_x = max(data[:, pair[0]]) - min(data[:, pair[0]]) diff_y = max(data[:, pair[1]]) - min(data[:, pair[1]]) ax.set_xlim([min(data[:, pair[0]]) - 0.05 * diff_x, max(data[:, pair[0]]) + 0.05 * diff_x]) ax.set_ylim([min(data[:, pair[1]]) - 0.05 * diff_y, max(data[:, pair[1]]) + 0.05 * diff_y]) ax.scatter(data[:, pair[0]], data[:, pair[1]], c=colors, cmap=pylab.get_cmap("jet"), marker='.', alpha=alpha, edgecolors='none', vmin=0, vmax=1) ax.set_xlabel(shorten(labels[pair[0]])) ax.set_ylabel(shorten(labels[pair[1]])) for ax in axs.flat[axs.size - 1:len(pairs) - 1:-1]: ax.scatter(data[:, 0], data[:, 1], marker='.') fig.suptitle(title, fontsize=16) pylab.rcParams['font.size'] = 12 #6 # pylab.draw() # fig.set_tight_layout(True) pylab.tight_layout() pylab.subplots_adjust(top=0.95) for ax in axs.flat[axs.size - 1:len(pairs) - 1:-1]: ax.set_visible(False) filename = outfile + '.png' if not os.path.exists(os.path.dirname(filename)): os.makedirs(os.path.dirname(filename)) fig.savefig(outfile + '.png') pylab.close('all') return True # Hierarchical graph visualization utilities
def __init__(self, filename, remove_bkg='constant', bkg_box_size=50, contour_threshold=3., min_points=10, shape_cut=0.2, area_cut=10., radius_dev_cut=0.5, connectivity_angle=3., output_path=None): hdulist = fits.open(filename) raw_image = hdulist[0].data.astype(np.float64) hdulist.close() # Raw image. self.raw_image = raw_image # Background structure and background map self._bkg = None self.background_map = None # Background removed image. self.image = None # Raw edges self.raw_borders = None # Filtered edges, so streak, by their morphologies and # also connected (i.e. linked) by their slope. self.streaks = None # Statistics for the image data. self._med = None self._std = None # Other variables. remove_bkg_options = ('constant', 'map') if remove_bkg not in remove_bkg_options: raise RuntimeError('"remove_bkg" must be the one among: %s' % ', '.join(remove_bkg_options)) self.remove_bkg = remove_bkg self.bkg_box_size = bkg_box_size self.contour_threshold = contour_threshold # These variables for the edge detections and linking. self.min_points = min_points self.shape_cut = shape_cut self.area_cut = area_cut self.radius_dev_cut = radius_dev_cut self.connectivity_angle = connectivity_angle # Set output path. if output_path is None: output_path = './%s/' % \ ('.'.join(os.path.basename(filename).split('.')[:-1])) if output_path[-1] != '/': output_path += '/' self.output_path = output_path # For plotting. pl.rcParams['figure.figsize'] = [12, 9]
def plot_rels(data, labels=None, colors=None, outfile="rels", latent=None, alpha=0.8): ns, n = data.shape if labels is None: labels = list(map(str, range(n))) ncol = 5 # ncol = 4 nrow = int(np.ceil(float(n * (n - 1) / 2) / ncol)) #nrow=1 #pylab.rcParams.update({'figure.autolayout': True}) fig, axs = pylab.subplots(nrow, ncol) fig.set_size_inches(5 * ncol, 5 * nrow) #fig.set_canvas(pylab.gcf().canvas) pairs = list(combinations(range(n), 2)) #[:4] pairs = sorted(pairs, key=lambda q: q[0]**2+q[1]**2) # Puts stronger relationships first if colors is not None: colors = (colors - np.min(colors)) / (np.max(colors) - np.min(colors)).clip(1e-7) for ax, pair in zip(axs.flat, pairs): if latent is None: ax.scatter(data[:, pair[0]], data[:, pair[1]], marker='.', edgecolors='none', alpha=alpha) else: # cs = 'rgbcmykrgbcmyk' markers = 'x+.o,<>^^<>,+x.' for j, ind in enumerate(np.unique(latent)): inds = (latent == ind) ax.scatter(data[inds, pair[0]], data[inds, pair[1]], c=colors[inds], cmap=pylab.get_cmap("jet"), marker=markers[j], alpha=0.5, edgecolors='none', vmin=0, vmax=1) ax.set_xlabel(shorten(labels[pair[0]])) ax.set_ylabel(shorten(labels[pair[1]])) for ax in axs.flat[axs.size - 1:len(pairs) - 1:-1]: ax.scatter(data[:, 0], data[:, 1], marker='.') pylab.rcParams['font.size'] = 12 #6 pylab.draw() #fig.set_tight_layout(True) fig.tight_layout() for ax in axs.flat[axs.size - 1:len(pairs) - 1:-1]: ax.set_visible(False) filename = outfile + '.png' if not os.path.exists(os.path.dirname(filename)): os.makedirs(os.path.dirname(filename)) fig.savefig(outfile + '.png') #df') pylab.close('all') return True