Python pylab 模块,subplots_adjust() 实例源码

我们从Python开源项目中,提取了以下6个代码示例,用于说明如何使用pylab.subplots_adjust()

项目:f1_2017    作者:aflaisler    | 项目源码 | 文件源码
def plot_importance(names, model, savefig=True):
    featureNames = numpy.array(names)
    featureImportance = model.feature_importances_
    featureImportance = featureImportance / featureImportance.max()
    sorted_idx = numpy.argsort(featureImportance)
    barPos = numpy.arange(sorted_idx.shape[0]) + .5
    plot.barh(barPos, featureImportance[sorted_idx], align='center')
    plot.yticks(barPos, featureNames[sorted_idx])
    plot.xlabel('Variable Importance')
    plot.subplots_adjust(left=0.2, right=0.9, top=0.9, bottom=0.1)
    if savefig:
        dt_ = datetime.datetime.now().strftime('%d%b%y_%H%M')
        plt.savefig("../graphs/featureImportance_" + dt_ + ".png")
    plot.show()


# Plot prediction save the graph with a timestamp
项目:tap    作者:mfouesneau    | 项目源码 | 文件源码
def setMargins(left=None, bottom=None, right=None, top=None, wspace=None, hspace=None):
        """
        Tune the subplot layout via the meanings (and suggested defaults) are::

            left  = 0.125  # the left side of the subplots of the figure
            right = 0.9    # the right side of the subplots of the figure
            bottom = 0.1   # the bottom of the subplots of the figure
            top = 0.9      # the top of the subplots of the figure
            wspace = 0.2   # the amount of width reserved for blank space between subplots
            hspace = 0.2   # the amount of height reserved for white space between subplots

        The actual defaults are controlled by the rc file

        """
        plt.subplots_adjust(left, bottom, right, top, wspace, hspace)
        plt.draw_if_interactive()
项目:astromalign    作者:dstndstn    | 项目源码 | 文件源码
def resetplot():
    import matplotlib
    import pylab as plt
    kw = {}
    for p in ['bottom', 'top', 'left', 'right', 'hspace', 'wspace']:
        kw[p] = matplotlib.rcParams['figure.subplot.' + p]
    plt.subplots_adjust(**kw)
项目:astromalign    作者:dstndstn    | 项目源码 | 文件源码
def plotaffinegrid(affines, exag=1e3, affineOnly=True, R=0.025, tpre='', bboxes=None):
    import pylab as plt
    NR = 3
    NC = int(ceil(len(affines)/3.))
    #R = 0.025 # 1.5 arcmin
    #for (exag,affonly) in [(1e2, False), (1e3, True), (1e4, True)]:
    plt.clf()
    for i,aff in enumerate(affines):
        plt.subplot(NR, NC, i+1)
        dl = aff.refdec - R
        dh = aff.refdec + R
        rl = aff.refra  - R / aff.rascale
        rh = aff.refra  + R / aff.rascale
        RR,DD = np.meshgrid(np.linspace(rl, rh, 11),
                            np.linspace(dl, dh, 11))
        plotaffine(aff, RR.ravel(), DD.ravel(), exag=exag, affineOnly=affineOnly,
                   doclf=False,
                   units='dots', width=2, headwidth=2.5, headlength=3, headaxislength=3)
        if bboxes is not None:
            for bb in bboxes:
                plt.plot(*bb, linestyle='-', color='0.5')
            plt.plot(*bboxes[i], linestyle='-', color='k')
        setRadecAxes(rl,rh,dl,dh)
        plt.xlabel('')
        plt.ylabel('')
        plt.xticks([])
        plt.yticks([])
        plt.title('field %i' % (i+1))
    plt.subplots_adjust(left=0.05, right=0.95, wspace=0.1)
    if affineOnly:
        tt = tpre + 'Affine part of transformations'
    else:
        tt = tpre + 'Transformations'
    plt.suptitle(tt + ' (x %g)' % exag)
项目:LinearCorex    作者:gregversteeg    | 项目源码 | 文件源码
def plot_rels(data, labels=None, colors=None, outfile="rels", latent=None, alpha=0.8, title=''):
    ns, n = data.shape
    if labels is None:
        labels = map(str, range(n))
    ncol = 5
    nrow = int(np.ceil(float(n * (n - 1) / 2) / ncol))

    fig, axs = pylab.subplots(nrow, ncol)
    fig.set_size_inches(5 * ncol, 5 * nrow)
    pairs = list(combinations(range(n), 2))
    if colors is not None:
        colors = (colors - np.min(colors)) / (np.max(colors) - np.min(colors))

    for ax, pair in zip(axs.flat, pairs):
        diff_x = max(data[:, pair[0]]) - min(data[:, pair[0]])
        diff_y = max(data[:, pair[1]]) - min(data[:, pair[1]])
        ax.set_xlim([min(data[:, pair[0]]) - 0.05 * diff_x, max(data[:, pair[0]]) + 0.05 * diff_x])
        ax.set_ylim([min(data[:, pair[1]]) - 0.05 * diff_y, max(data[:, pair[1]]) + 0.05 * diff_y])
        ax.scatter(data[:, pair[0]], data[:, pair[1]], c=colors, cmap=pylab.get_cmap("jet"),
                       marker='.', alpha=alpha, edgecolors='none', vmin=0, vmax=1)

        ax.set_xlabel(shorten(labels[pair[0]]))
        ax.set_ylabel(shorten(labels[pair[1]]))

    for ax in axs.flat[axs.size - 1:len(pairs) - 1:-1]:
        ax.scatter(data[:, 0], data[:, 1], marker='.')

    fig.suptitle(title, fontsize=16)
    pylab.rcParams['font.size'] = 12  #6
    # pylab.draw()
    # fig.set_tight_layout(True)
    pylab.tight_layout()
    pylab.subplots_adjust(top=0.95)
    for ax in axs.flat[axs.size - 1:len(pairs) - 1:-1]:
        ax.set_visible(False)
    filename = outfile + '.png'
    if not os.path.exists(os.path.dirname(filename)):
        os.makedirs(os.path.dirname(filename))
    fig.savefig(outfile + '.png')
    pylab.close('all')
    return True


# Hierarchical graph visualization utilities
项目:nmmn    作者:rsnemmen    | 项目源码 | 文件源码
def allplot(xb,yb,bins=30,fig=1,xlabel='x',ylabel='y'):
    """
Input:
X,Y : objects referring to the variables produced by PyMC that you want
to analyze. Example: X=M.theta, Y=M.slope.

Inherited from Tommy LE BLANC's code at astroplotlib|STSCI.
    """
    #X,Y=xb.trace(),yb.trace()
    X,Y=xb,yb

    #pylab.rcParams.update({'font.size': fontsize})
    fig=pylab.figure(fig)
    pylab.clf()

    gs = pylab.GridSpec(2, 2, width_ratios=[3,1], height_ratios=[1,3], wspace=0.07, hspace=0.07)
    scat=pylab.subplot(gs[2])
    histx=pylab.subplot(gs[0], sharex=scat)
    histy=pylab.subplot(gs[3], sharey=scat)
    #scat=fig.add_subplot(2,2,3)
    #histx=fig.add_subplot(2,2,1, sharex=scat)
    #histy=fig.add_subplot(2,2,4, sharey=scat)

    # Scatter plot
    scat.plot(X, Y,linestyle='none', marker='o', color='green', mec='green',alpha=.2, zorder=-99)

    gkde = scipy.stats.gaussian_kde([X, Y])
    x,y = numpy.mgrid[X.min():X.max():(X.max()-X.min())/25.,Y.min():Y.max():(Y.max()-Y.min())/25.]
    z = numpy.array(gkde.evaluate([x.flatten(), y.flatten()])).reshape(x.shape)
    scat.contour(x, y, z, linewidths=2)
    scat.set_xlabel(xlabel)
    scat.set_ylabel(ylabel)

    # X-axis histogram
    histx.hist(X, bins, histtype='stepfilled')
    pylab.setp(histx.get_xticklabels(), visible=False)  # no X label
    #histx.xaxis.set_major_formatter(pylab.NullFormatter()) # no X label

    # Y-axis histogram
    histy.hist(Y, bins, histtype='stepfilled', orientation='horizontal')
    pylab.setp(histy.get_yticklabels(), visible=False)  # no Y label
    #histy.yaxis.set_major_formatter(pylab.NullFormatter()) # no Y label

    #pylab.minorticks_on()
    #pylab.subplots_adjust(hspace=0.1)
    #pylab.subplots_adjust(wspace=0.1)
    pylab.draw()
    pylab.show()