Python pylab 模块,bar() 实例源码

我们从Python开源项目中,提取了以下9个代码示例,用于说明如何使用pylab.bar()

项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def Unittest_Kline():
    """"""
    kline = Guider("600100", "")
    print(kline.getData(0).date, kline.getLastData().date)

    #kline.myprint()
    obv = kline.OBV()

    pl.figure
    pl.subplot(2,1,1)
    pl.plot(kline.getCloses())
    pl.subplot(2,1,2)
    ma,m2,m3 = kline.MACD()
    pl.plot(ma)
    pl.plot(m2,'r')
    left = np.arange(0, len(m3))
    pl.bar(left,m3)
    #pl.plot(obv, 'y')
    pl.show()


#Unittest_Kstp()    
#
#???????????
#----------------------------------------------------------------------
项目:sequana    作者:sequana    | 项目源码 | 文件源码
def plot_and_save(self, filename="snakemake_stats.png",
                      outputdir="report"):
        import pylab
        # If the plot cannot be created (e.g. no valid stats), we create an empty
        # axes
        try: self.plot()
        except:
            pylab.bar([0],[0])
        if outputdir is None:
            pylab.savefig(filename)
        else:
            pylab.savefig(outputdir + os.sep + filename)
项目:dynamic-walking    作者:stephane-caron    | 项目源码 | 文件源码
def test_dT_impact(xvals, f, nmpc, sim, start=0.1, end=0.8, step=0.02, ymax=200,
                   sample_size=100, label=None):
    """Used to generate Figure XX of the paper."""
    c = raw_input("Did you remove iter/time caps in IPOPT settings? [y/N] ")
    if c.lower() not in ['y', 'yes']:
        print "Then go ahead and do it."
        return
    stats = [Statistics() for _ in xrange(len(xvals))]
    fails = [0. for _ in xrange(len(xvals))]
    pylab.ion()
    pylab.clf()
    for (i, dT) in enumerate(xvals):
        f(dT)
        for _ in xrange(sample_size):
            nmpc.on_tick(sim)
            if 'Solve' in nmpc.nlp.return_status:
                stats[i].add(nmpc.nlp.solve_time)
            else:  # max CPU time exceeded, infeasible problem detected, ...
                fails[i] += 1.
    yvals = [1000 * ts.avg if ts.avg is not None else 0. for ts in stats]
    yerr = [1000 * ts.std if ts.std is not None else 0. for ts in stats]
    pylab.bar(
        xvals, yvals, width=step, yerr=yerr, color='y', capsize=5,
        align='center', error_kw={'capsize': 5, 'elinewidth': 5})
    pylab.xlim(start - step / 2, end + step / 2)
    pylab.ylim(0, ymax)
    pylab.grid(True)
    if label is not None:
        pylab.xlabel(label, fontsize=24)
    pylab.ylabel('Comp. time (ms)', fontsize=20)
    pylab.tick_params(labelsize=16)
    pylab.twinx()
    yfails = [100. * fails[i] / sample_size for i in xrange(len(xvals))]
    pylab.plot(xvals, yfails, 'ro', markersize=12)
    pylab.plot(xvals, yfails, 'r--', linewidth=3)
    pylab.xlim(start - step / 2, end + step / 2)
    pylab.ylabel("Failure rate [%]", fontsize=20)
    pylab.tight_layout()
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def bar(pl, x, y):
    pl.figure
    pl.bar(x,y)
    pl.show()
    pl.close()
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def bar(self, *args, **kwargs):
        pl.bar(*args, **kwargs)
项目:SyConn    作者:StructuralNeurobiologyLab    | 项目源码 | 文件源码
def feature_importance(rf, save_path=None):
    """Plots feature importance of sklearn RandomForest

    Parameters
    ----------
    rf : RandomForestClassifier
    save_path : str
    """
    importances = rf.feature_importances_
    nb = len(importances)
    tree_imp = [tree.feature_importances_ for tree in rf.estimators_]
    # print "Print feature importance of rf with %d trees." % len(tree_imp)
    std = np.std(tree_imp, axis=0) / np.sqrt(len(tree_imp))
    indices = np.argsort(importances)[::-1]
    # Print the feature ranking
    # print("Feature ranking:")
    # for f in range(nb):
    #     print("%d. feature %d (%f)" %
    #           (f + 1, indices[f], importances[indices[f]]))

    # Plot the feature importances of the forest
    pl.figure()
    pl.title("Feature importances")
    pl.bar(range(nb), importances[indices],
           color="r", yerr=std[indices], align="center")
    pl.xticks(range(nb), indices)
    pl.xlim([-1, nb])
    if save_path is not None:
        pl.savefig(save_path)
    pl.close()
项目:AdK_analysis    作者:orbeckst    | 项目源码 | 文件源码
def barplot(self,direction,alpha=0.4):
        import pylab
        pnormalize = pylab.normalize(vmin=1,vmax=len(self.distribution[direction]))
        count = 0
        # dx = 0.1/(2*len(self.distribution[direction]))
        for target,(edges,heights) in self.distribution[direction].items():
            count += 1
            lefts = edges[:-1]                # + count*dx
            widths = (edges[1:] - edges[:-1]) # - count*dx
            RGB = pylab.cm.jet(pnormalize(count))[:3]
            pylab.bar(lefts,heights,width=widths,
                      alpha=alpha,
                      color=RGB,
                      label="%s" % target)
项目:livespin    作者:biocompibens    | 项目源码 | 文件源码
def bootstrap(self, nBoot, nbins = 20):
        pops = np.zeros((nBoot, nbins))
        #medianpop = [[] for i in data.cat]
        pylab.figure(figsize = (20,14))
        for i in xrange(3):
            pylab.subplot(1,3,i+1)
            #if  i ==0:
                #pylab.title("Bootstrap on medians", fontsize = 20.)
            pop = self.angles[(self.categories == i)]# & (self.GFP > 2000)]
            for index in xrange(nBoot):
                newpop = np.random.choice(pop, size=len(pop), replace=True)
                #medianpop[i].append(np.median(newpop))
                newhist, binedges = np.histogram(newpop, bins = nbins)
                pops[index,:] = newhist/1./len(pop)
            #pylab.hist(medianpop[i], bins = nbins, label = "{2} median {0:.1f}, std {1:.1f}".format(np.median(medianpop[i]), np.std(medianpop[i]), data.cat[i]), color = data.colors[i], alpha =.2, normed = True)

            meanpop = np.sum(pops, axis = 0)/1./nBoot
            stdY = np.std(pops, axis = 0)
            print "width", binedges[1] - binedges[0]
            pylab.bar(binedges[:-1], meanpop, width = binedges[1] - binedges[0], label = "mean distribution", color = data.colors[i], alpha = 0.6)
            pylab.fill_between((binedges[:-1]+binedges[1:])/2., meanpop-stdY, meanpop+stdY, alpha = 0.3)
            pylab.legend()
            pylab.title(data.cat[i])
            pylab.xlabel("Angle(degree)", fontsize = 15)
            pylab.ylim([-.01, 0.23])

        pylab.savefig("/users/biocomp/frose/frose/Graphics/FINALRESULTS-diff-f3/distrib_nBootstrap{0}_bins{1}_GFPsup{2}_{3}.png".format(nBoot, nbins, 'all', randint(0,999)))
项目:ngas    作者:ICRAR    | 项目源码 | 文件源码
def _plotVirtualTime(accessList, archName, fgname, rd_bin_width = 250):
    """
    Plot data access based on virtual time
    """
    print "converting to num arrary for _plotVirtualTime"
    stt = time.time()
    x, y, id, ad, yd = _raListToVTimeNA(accessList)
    print ("Converting to num array takes %d seconds" % (time.time() - stt))
    fig = pl.figure()
    ax = fig.add_subplot(211)
    ax.set_xlabel('Access sequence number (%s to %s)' % (id.split('T')[0], ad.split('T')[0]), fontsize = 9)
    ax.set_ylabel('Observation sequence number', fontsize = 9)
    ax.set_title('%s archive activity ' % (archName), fontsize=10)
    ax.tick_params(axis='both', which='major', labelsize=8)
    ax.tick_params(axis='both', which='minor', labelsize=6)

    ax.plot(x, y, color = 'b', marker = 'x', linestyle = '',
                        label = 'access', markersize = 3)

    #legend = ax.legend(loc = 'upper left', shadow=True, prop={'size':7})

    ax1 = fig.add_subplot(212)
    ax1.set_xlabel('Access sequence number (%s to %s)' % (id.split('T')[0], ad.split('T')[0]), fontsize = 9)
    ax1.set_ylabel('Reuse distance (in-between accesses)', fontsize = 9)

    ax1.tick_params(axis='both', which='major', labelsize=8)
    ax1.tick_params(axis='both', which='minor', labelsize=6)

    ax1.plot(x, yd, color = 'k', marker = '+', linestyle = '',
                        label = 'reuse distance', markersize = 3)

    pl.tight_layout()
    fig.savefig(fgname)
    pl.close(fig)

    y1d = yd[~np.isnan(yd)]
    num_bin = (max(y1d) - min(y1d)) / rd_bin_width
    hist, bins = np.histogram(y1d, bins = num_bin)

    width = 0.7 * (bins[1] - bins[0])
    center = (bins[:-1] + bins[1:]) / 2
    fig1 = pl.figure()
    #fig1.suptitle('Histogram of data transfer rate from Pawsey to MIT', fontsize=14)
    ax2 = fig1.add_subplot(111)
    ax2.set_title('Reuse distance Histogram for %s' % archName, fontsize = 10)
    ax2.set_ylabel('Frequency', fontsize = 9)
    ax2.set_xlabel('Reuse distance (# of observation)', fontsize = 9)

    ax2.tick_params(axis='both', which='major', labelsize=8)
    ax2.tick_params(axis='both', which='minor', labelsize=6)

    pl.bar(center, hist, align='center', width=width)

    fileName, fileExtension = os.path.splitext(fgname)
    fig1.savefig('%s_rud_hist%s' % (fileName, fileExtension))

    pl.close(fig1)