Python pylab 模块,suptitle() 实例源码

我们从Python开源项目中,提取了以下11个代码示例,用于说明如何使用pylab.suptitle()

项目:actinf    作者:x75    | 项目源码 | 文件源码
def plotstuff():
    X__ = np.load("tm_X.npy")
    S_pred = np.load("tm_S_pred.npy")
    E_pred = np.load("tm_E_pred.npy")
    M = np.load("tm_M.npy")

    pl.ioff()
    pl.suptitle("mode: %s (X: FM input, state pred: FM output)" % ("bluib"))
    pl.subplot(511)
    pl.title("X[goals]")
    pl.plot(X__[10:,0:4], "-x")
    pl.subplot(512)
    pl.title("X[prediction error]")
    pl.plot(X__[10:,4:], "-x")
    pl.subplot(513)
    pl.title("state pred")
    pl.plot(S_pred)
    pl.subplot(514)
    pl.title("error state - goal")
    pl.plot(E_pred)
    pl.subplot(515)
    pl.title("state")
    pl.plot(M)
    pl.show()
项目:actinf    作者:x75    | 项目源码 | 文件源码
def plot_scattermatrix(df, title = "plot_scattermatrix"):
    """plot a scattermatrix of dataframe df"""
    if df is None:
        print "plot_scattermatrix: no data passed"
        return

    from pandas.tools.plotting import scatter_matrix
    # df = pd.DataFrame(X, columns=['x1_t', 'x2_t', 'x1_tptau', 'x2_tptau', 'u_t'])
    # scatter_data_raw = np.hstack((np.array(Xs), np.array(Ys)))
    # scatter_data_raw = np.hstack((Xs, Ys))
    # print "scatter_data_raw", scatter_data_raw.shape

    pl.ioff()
    # df = pd.DataFrame(scatter_data_raw, columns=["x_%d" % i for i in range(scatter_data_raw.shape[1])])
    sm = scatter_matrix(df, alpha=0.2, figsize=(10, 10), diagonal='hist')
    fig = sm[0,0].get_figure()
    fig.suptitle(title)
    if SAVEPLOTS:
        fig.savefig("fig_%03d_scattermatrix.pdf" % (fig.number), dpi=300)
    fig.show()
    # pl.show()
项目:astromalign    作者:dstndstn    | 项目源码 | 文件源码
def plotaffinegrid(affines, exag=1e3, affineOnly=True, R=0.025, tpre='', bboxes=None):
    import pylab as plt
    NR = 3
    NC = int(ceil(len(affines)/3.))
    #R = 0.025 # 1.5 arcmin
    #for (exag,affonly) in [(1e2, False), (1e3, True), (1e4, True)]:
    plt.clf()
    for i,aff in enumerate(affines):
        plt.subplot(NR, NC, i+1)
        dl = aff.refdec - R
        dh = aff.refdec + R
        rl = aff.refra  - R / aff.rascale
        rh = aff.refra  + R / aff.rascale
        RR,DD = np.meshgrid(np.linspace(rl, rh, 11),
                            np.linspace(dl, dh, 11))
        plotaffine(aff, RR.ravel(), DD.ravel(), exag=exag, affineOnly=affineOnly,
                   doclf=False,
                   units='dots', width=2, headwidth=2.5, headlength=3, headaxislength=3)
        if bboxes is not None:
            for bb in bboxes:
                plt.plot(*bb, linestyle='-', color='0.5')
            plt.plot(*bboxes[i], linestyle='-', color='k')
        setRadecAxes(rl,rh,dl,dh)
        plt.xlabel('')
        plt.ylabel('')
        plt.xticks([])
        plt.yticks([])
        plt.title('field %i' % (i+1))
    plt.subplots_adjust(left=0.05, right=0.95, wspace=0.1)
    if affineOnly:
        tt = tpre + 'Affine part of transformations'
    else:
        tt = tpre + 'Transformations'
    plt.suptitle(tt + ' (x %g)' % exag)
项目:PyME    作者:vikramsunkara    | 项目源码 | 文件源码
def plot_marginals(state_space,p,name,t,labels = False):
    import matplotlib
    #matplotlib.use("PDF")
    #matplotlib.rcParams['figure.figsize'] = 5,10
    import matplotlib.pyplot as pl
    pl.suptitle("time: "+ str(t)+" units")
    print("time : "+ str(t))

    D = state_space.shape[1]

    for i in range(D):
        marg_X = np.unique(state_space[:,i])
        A = np.where(marg_X[:,np.newaxis] == state_space[:,i].T[np.newaxis,:],1,0)
        marg_p = np.dot(A,p)
        pl.subplot(int(D/2)+1,2,i+1)
        pl.plot(marg_X,marg_p)
        pl.axvline(np.sum(marg_X*marg_p),color= 'r')
        pl.axvline(marg_X[np.argmax(marg_p)],color='g')
        if labels == False:
            pl.xlabel("Specie: " + str(i+1))
        else:
            pl.xlabel(labels[i])
    #pl.savefig("Visuals/marginal_"+name+".pdf",format='pdf')
    pl.show()
    pl.clf()

##Simple Compress : best N-term approximation under the ell_1 norm
#@param state_space the state space shape: (Number of Species X Number of states) 
#@param p probability vector
#@param eps the ell_1 error to remove
#@return -Compressed state space
#       -Compressed Probs
项目:PyME    作者:vikramsunkara    | 项目源码 | 文件源码
def plot_marginals(state_space,p,name,t,labels = False,interactive = False):
    import matplotlib

    import matplotlib.pyplot as pl
    if interactive == True: 
        pl.ion()
    pl.clf()
    pl.suptitle("time: "+ str(t)+" units")
    #print("time : "+ str(t))
    D = state_space.shape[1]

    for i in range(D):
        marg_X = np.unique(state_space[:,i])
        A = np.where(marg_X[:,np.newaxis] == state_space[:,i].T[np.newaxis,:],1,0)
        marg_p = np.dot(A,p)
        pl.subplot(int(D/2)+1,2,i+1)
        pl.plot(marg_X,marg_p)
        pl.yticks(np.linspace(np.amin(marg_p), np.amax(marg_p), num=3))
        pl.axvline(np.sum(marg_X*marg_p),color= 'r')
        pl.axvline(marg_X[np.argmax(marg_p)],color='g')
        if labels == False:
            pl.xlabel("Specie: " + str(i+1))
        else:
            pl.xlabel(labels[i])
    if interactive == True:
        pl.draw()
    else:
        pl.tight_layout()
        pl.show()
项目:ugali    作者:DarkEnergySurvey    | 项目源码 | 文件源码
def plot6(self, filename, title=None):
        fig = plt.figure('summary', figsize=(11, 6))
        fig.subplots_adjust(wspace=0.4, hspace=0.25)
        fdg = r'{.}\!^\circ'
        coordstring = ('%.2f, %.2f'%(self.ra, self.dec)).replace('.',fdg)
        if title is None:
            #title = r'%s; ($\alpha_{2000}$, $\delta_{2000}$, $m-M$) = (%s, %.2f)'%(self.source.name, coordstring, self.isochrone.distance_modulus)
            title = r'$(\alpha_{2000}, \delta_{2000}, m-M) = (%s, %.1f)$'%(coordstring, self.isochrone.distance_modulus)

        if title: 
            plt.suptitle(title, fontsize=14)

        logger.debug("Drawing smooth stars...")
        plt.subplot(2, 3, 1)
        self.drawSmoothStars()

        logger.debug("Drawing density profile...")
        pylab.subplot(2, 3, 2)
        self.drawDensityProfile()

        logger.debug("Drawing spatial distribution of members...")
        pylab.subplot(2, 3, 3)
        self.drawMembersSpatial(filename)

        logger.debug("Drawing smooth galaxies...")
        plt.subplot(2, 3, 4)
        self.drawSmoothGalaxies()

        logger.debug("Drawing Hess diagram...")         
        plt.subplot(2,3,5)
        self.drawHessDiagram()

        logger.debug("Drawing CMD of members...")                  
        pylab.subplot(2, 3, 6)
        self.drawMembersCMD(filename)
项目:actinf    作者:x75    | 项目源码 | 文件源码
def rh_e2p_sample_plot(self):
        # intro checks
        if not self.attr_check(["y_samples"]):
            return

        pl.ioff()
        # 2a. plot sampling results
        pl.suptitle("%s step 1 + 2: learning proprio, then learning e2p" % (self.mode,))
        ax = pl.subplot(211)
        pl.title("Exteroceptive state S_e, extero to proprio mapping p2e")
        self.S_ext = ax.plot(self.logs["S_ext"], "k-", alpha=0.8, label="S_e")
        p2e   = ax.plot(self.logs["P2E_pred"], "r-", alpha=0.8, label="p2e")
        handles, labels = ax.get_legend_handles_labels()
        ax.legend(handles=[handles[i] for i in [0, 2]],
                  labels=[labels[i] for i in [0, 2]])
        ax2 = pl.subplot(212)
        pl.title("Proprioceptive state S_p, proprio to extero mapping e2p")
        ax2.plot(self.logs["M_prop_pred"], "k-", label="S_p")
        # pl.plot(self.logs["E2P_pred"], "y-", label="E2P knn")
        ax2.plot(self.y_samples, "g-", label="E2P gmm cond", alpha=0.8, linewidth=2)
        ax2.plot(self.logs["X__"][:,:3], "r-", label="goal goal")
        for _ in self.y_samples_:
            plausibility = _ - self.logs["X__"][:,:3]
            # print "_.shape = %s, plausibility.shape = %s, %d" % (_.shape, plausibility.shape, 0)
            # print "_", np.sum(_), _ - self.logs["X__"][:,:3]
            plausibility_norm = np.linalg.norm(plausibility, 2, axis=1)
            print "plausibility = %f" % (np.mean(plausibility_norm))
            if np.mean(plausibility_norm) < 0.8: # FIXME: what is that for, for thinning out the number of samples?
                ax2.plot(_, "b.", label="E2P gmm samples", alpha=0.2)
        handles, labels = ax2.get_legend_handles_labels()
        print "handles, labels", handles, labels
        legidx = slice(0, 12, 3)
        ax2.legend(handles[legidx], labels[legidx])
        # ax.legend(handles=[handles[i] for i in [0, 2]],
        #           labels=[labels[i] for i in [0, 2]])
        pl.show()
项目:actinf    作者:x75    | 项目源码 | 文件源码
def rh_e2p_sample_and_drive_plot(self):
        # e2pidx = slice(self.numsteps,self.numsteps*2)
        e2pidx = slice(0, self.numsteps)
        pl.suptitle("%s top: extero goal and extero state, bottom: error_e = |g_e - s_e|^2" % (self.mode,))
        pl.subplot(211)
        pl.plot(self.logs["goal_ext"][e2pidx])
        pl.plot(self.logs["S_ext"][e2pidx])
        pl.subplot(212)
        pl.plot(np.linalg.norm(self.logs["E_pred_e"][e2pidx], 2, axis=1))
        pl.show()
项目:actinf    作者:x75    | 项目源码 | 文件源码
def plot_scattermatrix_reduced(df, title = "plot_scattermatrix_reduced"):
    input_cols  = [i for i in df.columns if i.startswith("X")]
    output_cols = [i for i in df.columns if i.startswith("Y")]
    Xs = df[input_cols]
    Ys = df[output_cols]

    numsamples = df.shape[0]
    print "plot_scattermatrix_reduced: numsamples = %d" % numsamples

    # numplots = Xs.shape[1] * Ys.shape[1]
    # print "numplots = %d" % numplots

    gs = gridspec.GridSpec(Ys.shape[1], Xs.shape[1])
    pl.ioff()
    fig = pl.figure()
    fig.suptitle(title)
    # alpha = 1.0 / np.power(numsamples, 1.0/(Xs.shape[1] - 0))
    alpha = 0.2
    print "alpha", alpha
    cols = ["k", "b", "r", "g", "c", "m", "y"]
    for i in range(Xs.shape[1]):
        for j in range(Ys.shape[1]):
            # print "i, j", i, j, Xs, Ys
            ax = fig.add_subplot(gs[j, i])
            ax.plot(Xs.as_matrix()[:,i], Ys.as_matrix()[:,j], "ko", alpha = alpha)
            ax.set_xlabel(input_cols[i])
            ax.set_ylabel(output_cols[j])
    if SAVEPLOTS:
        fig.savefig("fig_%03d_scattermatrix_reduced.pdf" % (fig.number), dpi=300)
    fig.show()
项目:facade-segmentation    作者:jfemiani    | 项目源码 | 文件源码
def process_files(files, basedir='./data', debug=False, rectify=False,
                  outdir='./data/for-labelme', **kwargs):
    attempts = 0
    n = len(files)

    print "Rectify is set to", rectify

    try:
        os.makedirs(outdir)
    except OSError as e:
        pass

    if debug:
        try:
            os.makedirs(os.path.join(outdir, 'debug'))
        except OSError as e:
            # Directory already exists
            pass

    for i, f in enumerate(files):
        try:
            newbasename = rename_file(f, basedir)
            newname = os.path.join(outdir, newbasename)
            print i + 1, 'of', n, newname

            image = imread(f)

            if rectify:
                try:
                    meta = {}
                    rectified = rectify_building(image, meta)
                    if debug:
                        import pylab as pl
                        h = meta['homography']
                        pl.suptitle('u:{} d:{} l:{} r:{}'.format(h.du, h.dd, h.dl, h.dr))
                        pl.subplot(221)
                        pl.imshow(image)
                        pl.axis('off')
                        pl.subplot(222)
                        pl.imshow(meta['building'])
                        pl.axis('off')
                        pl.subplot(223)
                        h.plot_original()
                        pl.subplot(224)
                        h.plot_rectified()
                        pl.savefig(os.path.join(outdir, 'debug', newbasename))
                    imsave(newname, rectified)
                except Exception as e:
                    print e
                    pass
            else:
                imsave(newname, image)
        except Exception as e:
            print e
项目:ugali    作者:DarkEnergySurvey    | 项目源码 | 文件源码
def plotTriangle(srcfile,samples,burn=0,**kwargs):
    #import triangle
    import corner
    import ugali.analysis.source
    import ugali.analysis.mcmc
    #matplotlib.rcParams.update({'text.usetex': True})

    source = ugali.analysis.source.Source()
    source.load(srcfile,section='source')
    params = source.get_params()
    results = yaml.load(open(srcfile))['results']
    samples = ugali.analysis.mcmc.Samples(samples)

    names = samples.names
    labels = names 
    truths = [params[n] for n in names]
    chain = samples.get(burn=burn,clip=5)

    ### Triangle plot
    #extents = [[0,15e3],[323.6,323.8],[-59.8,-59.7],[0,0.1],[19.5,20.5]]

    kwargs.setdefault('extents',None)
    kwargs.setdefault('plot_contours',True)
    kwargs.setdefault('plot_datapoints',True)
    kwargs.setdefault('verbose',False)
    kwargs.setdefault('quantiles',[0.16,0.84])

    if len(names) > 1:
        fig = corner.corner(chain,labels=labels,truths=truths,**kwargs)
    else:
        fig = plt.figure()
        plt.hist(chain,bins=100)
        plt.xlabel(names[0])

    try:
        text  = 'RA,DEC = (%.2f,%.2f)\n'%(results['ra'][0],results['dec'][0])
        text += '(m-M,D) = (%.1f, %.0f kpc)\n'%(results['distance_modulus'][0],results['distance'][0])
        text += r'$r_h$ = %.1f arcmin'%(results['extension_arcmin'][0])+'\n'
        text += 'TS = %.1f\n'%results['ts'][0]
        text += 'NSamples = %i\n'%(len(chain))
        #plt.figtext(0.65,0.90,text,ha='left',va='top')
    except KeyError as e:
        logger.warning(str(e))
        pass

    label = map(str.capitalize,source.name.split('_'))
    label[-1] = label[-1].upper()
    title = '%s'%' '.join(label)
    plt.suptitle(title)


############################################################