我们从Python开源项目中,提取了以下11个代码示例,用于说明如何使用pylab.suptitle()。
def plotstuff(): X__ = np.load("tm_X.npy") S_pred = np.load("tm_S_pred.npy") E_pred = np.load("tm_E_pred.npy") M = np.load("tm_M.npy") pl.ioff() pl.suptitle("mode: %s (X: FM input, state pred: FM output)" % ("bluib")) pl.subplot(511) pl.title("X[goals]") pl.plot(X__[10:,0:4], "-x") pl.subplot(512) pl.title("X[prediction error]") pl.plot(X__[10:,4:], "-x") pl.subplot(513) pl.title("state pred") pl.plot(S_pred) pl.subplot(514) pl.title("error state - goal") pl.plot(E_pred) pl.subplot(515) pl.title("state") pl.plot(M) pl.show()
def plot_scattermatrix(df, title = "plot_scattermatrix"): """plot a scattermatrix of dataframe df""" if df is None: print "plot_scattermatrix: no data passed" return from pandas.tools.plotting import scatter_matrix # df = pd.DataFrame(X, columns=['x1_t', 'x2_t', 'x1_tptau', 'x2_tptau', 'u_t']) # scatter_data_raw = np.hstack((np.array(Xs), np.array(Ys))) # scatter_data_raw = np.hstack((Xs, Ys)) # print "scatter_data_raw", scatter_data_raw.shape pl.ioff() # df = pd.DataFrame(scatter_data_raw, columns=["x_%d" % i for i in range(scatter_data_raw.shape[1])]) sm = scatter_matrix(df, alpha=0.2, figsize=(10, 10), diagonal='hist') fig = sm[0,0].get_figure() fig.suptitle(title) if SAVEPLOTS: fig.savefig("fig_%03d_scattermatrix.pdf" % (fig.number), dpi=300) fig.show() # pl.show()
def plotaffinegrid(affines, exag=1e3, affineOnly=True, R=0.025, tpre='', bboxes=None): import pylab as plt NR = 3 NC = int(ceil(len(affines)/3.)) #R = 0.025 # 1.5 arcmin #for (exag,affonly) in [(1e2, False), (1e3, True), (1e4, True)]: plt.clf() for i,aff in enumerate(affines): plt.subplot(NR, NC, i+1) dl = aff.refdec - R dh = aff.refdec + R rl = aff.refra - R / aff.rascale rh = aff.refra + R / aff.rascale RR,DD = np.meshgrid(np.linspace(rl, rh, 11), np.linspace(dl, dh, 11)) plotaffine(aff, RR.ravel(), DD.ravel(), exag=exag, affineOnly=affineOnly, doclf=False, units='dots', width=2, headwidth=2.5, headlength=3, headaxislength=3) if bboxes is not None: for bb in bboxes: plt.plot(*bb, linestyle='-', color='0.5') plt.plot(*bboxes[i], linestyle='-', color='k') setRadecAxes(rl,rh,dl,dh) plt.xlabel('') plt.ylabel('') plt.xticks([]) plt.yticks([]) plt.title('field %i' % (i+1)) plt.subplots_adjust(left=0.05, right=0.95, wspace=0.1) if affineOnly: tt = tpre + 'Affine part of transformations' else: tt = tpre + 'Transformations' plt.suptitle(tt + ' (x %g)' % exag)
def plot_marginals(state_space,p,name,t,labels = False): import matplotlib #matplotlib.use("PDF") #matplotlib.rcParams['figure.figsize'] = 5,10 import matplotlib.pyplot as pl pl.suptitle("time: "+ str(t)+" units") print("time : "+ str(t)) D = state_space.shape[1] for i in range(D): marg_X = np.unique(state_space[:,i]) A = np.where(marg_X[:,np.newaxis] == state_space[:,i].T[np.newaxis,:],1,0) marg_p = np.dot(A,p) pl.subplot(int(D/2)+1,2,i+1) pl.plot(marg_X,marg_p) pl.axvline(np.sum(marg_X*marg_p),color= 'r') pl.axvline(marg_X[np.argmax(marg_p)],color='g') if labels == False: pl.xlabel("Specie: " + str(i+1)) else: pl.xlabel(labels[i]) #pl.savefig("Visuals/marginal_"+name+".pdf",format='pdf') pl.show() pl.clf() ##Simple Compress : best N-term approximation under the ell_1 norm #@param state_space the state space shape: (Number of Species X Number of states) #@param p probability vector #@param eps the ell_1 error to remove #@return -Compressed state space # -Compressed Probs
def plot_marginals(state_space,p,name,t,labels = False,interactive = False): import matplotlib import matplotlib.pyplot as pl if interactive == True: pl.ion() pl.clf() pl.suptitle("time: "+ str(t)+" units") #print("time : "+ str(t)) D = state_space.shape[1] for i in range(D): marg_X = np.unique(state_space[:,i]) A = np.where(marg_X[:,np.newaxis] == state_space[:,i].T[np.newaxis,:],1,0) marg_p = np.dot(A,p) pl.subplot(int(D/2)+1,2,i+1) pl.plot(marg_X,marg_p) pl.yticks(np.linspace(np.amin(marg_p), np.amax(marg_p), num=3)) pl.axvline(np.sum(marg_X*marg_p),color= 'r') pl.axvline(marg_X[np.argmax(marg_p)],color='g') if labels == False: pl.xlabel("Specie: " + str(i+1)) else: pl.xlabel(labels[i]) if interactive == True: pl.draw() else: pl.tight_layout() pl.show()
def plot6(self, filename, title=None): fig = plt.figure('summary', figsize=(11, 6)) fig.subplots_adjust(wspace=0.4, hspace=0.25) fdg = r'{.}\!^\circ' coordstring = ('%.2f, %.2f'%(self.ra, self.dec)).replace('.',fdg) if title is None: #title = r'%s; ($\alpha_{2000}$, $\delta_{2000}$, $m-M$) = (%s, %.2f)'%(self.source.name, coordstring, self.isochrone.distance_modulus) title = r'$(\alpha_{2000}, \delta_{2000}, m-M) = (%s, %.1f)$'%(coordstring, self.isochrone.distance_modulus) if title: plt.suptitle(title, fontsize=14) logger.debug("Drawing smooth stars...") plt.subplot(2, 3, 1) self.drawSmoothStars() logger.debug("Drawing density profile...") pylab.subplot(2, 3, 2) self.drawDensityProfile() logger.debug("Drawing spatial distribution of members...") pylab.subplot(2, 3, 3) self.drawMembersSpatial(filename) logger.debug("Drawing smooth galaxies...") plt.subplot(2, 3, 4) self.drawSmoothGalaxies() logger.debug("Drawing Hess diagram...") plt.subplot(2,3,5) self.drawHessDiagram() logger.debug("Drawing CMD of members...") pylab.subplot(2, 3, 6) self.drawMembersCMD(filename)
def rh_e2p_sample_plot(self): # intro checks if not self.attr_check(["y_samples"]): return pl.ioff() # 2a. plot sampling results pl.suptitle("%s step 1 + 2: learning proprio, then learning e2p" % (self.mode,)) ax = pl.subplot(211) pl.title("Exteroceptive state S_e, extero to proprio mapping p2e") self.S_ext = ax.plot(self.logs["S_ext"], "k-", alpha=0.8, label="S_e") p2e = ax.plot(self.logs["P2E_pred"], "r-", alpha=0.8, label="p2e") handles, labels = ax.get_legend_handles_labels() ax.legend(handles=[handles[i] for i in [0, 2]], labels=[labels[i] for i in [0, 2]]) ax2 = pl.subplot(212) pl.title("Proprioceptive state S_p, proprio to extero mapping e2p") ax2.plot(self.logs["M_prop_pred"], "k-", label="S_p") # pl.plot(self.logs["E2P_pred"], "y-", label="E2P knn") ax2.plot(self.y_samples, "g-", label="E2P gmm cond", alpha=0.8, linewidth=2) ax2.plot(self.logs["X__"][:,:3], "r-", label="goal goal") for _ in self.y_samples_: plausibility = _ - self.logs["X__"][:,:3] # print "_.shape = %s, plausibility.shape = %s, %d" % (_.shape, plausibility.shape, 0) # print "_", np.sum(_), _ - self.logs["X__"][:,:3] plausibility_norm = np.linalg.norm(plausibility, 2, axis=1) print "plausibility = %f" % (np.mean(plausibility_norm)) if np.mean(plausibility_norm) < 0.8: # FIXME: what is that for, for thinning out the number of samples? ax2.plot(_, "b.", label="E2P gmm samples", alpha=0.2) handles, labels = ax2.get_legend_handles_labels() print "handles, labels", handles, labels legidx = slice(0, 12, 3) ax2.legend(handles[legidx], labels[legidx]) # ax.legend(handles=[handles[i] for i in [0, 2]], # labels=[labels[i] for i in [0, 2]]) pl.show()
def rh_e2p_sample_and_drive_plot(self): # e2pidx = slice(self.numsteps,self.numsteps*2) e2pidx = slice(0, self.numsteps) pl.suptitle("%s top: extero goal and extero state, bottom: error_e = |g_e - s_e|^2" % (self.mode,)) pl.subplot(211) pl.plot(self.logs["goal_ext"][e2pidx]) pl.plot(self.logs["S_ext"][e2pidx]) pl.subplot(212) pl.plot(np.linalg.norm(self.logs["E_pred_e"][e2pidx], 2, axis=1)) pl.show()
def plot_scattermatrix_reduced(df, title = "plot_scattermatrix_reduced"): input_cols = [i for i in df.columns if i.startswith("X")] output_cols = [i for i in df.columns if i.startswith("Y")] Xs = df[input_cols] Ys = df[output_cols] numsamples = df.shape[0] print "plot_scattermatrix_reduced: numsamples = %d" % numsamples # numplots = Xs.shape[1] * Ys.shape[1] # print "numplots = %d" % numplots gs = gridspec.GridSpec(Ys.shape[1], Xs.shape[1]) pl.ioff() fig = pl.figure() fig.suptitle(title) # alpha = 1.0 / np.power(numsamples, 1.0/(Xs.shape[1] - 0)) alpha = 0.2 print "alpha", alpha cols = ["k", "b", "r", "g", "c", "m", "y"] for i in range(Xs.shape[1]): for j in range(Ys.shape[1]): # print "i, j", i, j, Xs, Ys ax = fig.add_subplot(gs[j, i]) ax.plot(Xs.as_matrix()[:,i], Ys.as_matrix()[:,j], "ko", alpha = alpha) ax.set_xlabel(input_cols[i]) ax.set_ylabel(output_cols[j]) if SAVEPLOTS: fig.savefig("fig_%03d_scattermatrix_reduced.pdf" % (fig.number), dpi=300) fig.show()
def process_files(files, basedir='./data', debug=False, rectify=False, outdir='./data/for-labelme', **kwargs): attempts = 0 n = len(files) print "Rectify is set to", rectify try: os.makedirs(outdir) except OSError as e: pass if debug: try: os.makedirs(os.path.join(outdir, 'debug')) except OSError as e: # Directory already exists pass for i, f in enumerate(files): try: newbasename = rename_file(f, basedir) newname = os.path.join(outdir, newbasename) print i + 1, 'of', n, newname image = imread(f) if rectify: try: meta = {} rectified = rectify_building(image, meta) if debug: import pylab as pl h = meta['homography'] pl.suptitle('u:{} d:{} l:{} r:{}'.format(h.du, h.dd, h.dl, h.dr)) pl.subplot(221) pl.imshow(image) pl.axis('off') pl.subplot(222) pl.imshow(meta['building']) pl.axis('off') pl.subplot(223) h.plot_original() pl.subplot(224) h.plot_rectified() pl.savefig(os.path.join(outdir, 'debug', newbasename)) imsave(newname, rectified) except Exception as e: print e pass else: imsave(newname, image) except Exception as e: print e
def plotTriangle(srcfile,samples,burn=0,**kwargs): #import triangle import corner import ugali.analysis.source import ugali.analysis.mcmc #matplotlib.rcParams.update({'text.usetex': True}) source = ugali.analysis.source.Source() source.load(srcfile,section='source') params = source.get_params() results = yaml.load(open(srcfile))['results'] samples = ugali.analysis.mcmc.Samples(samples) names = samples.names labels = names truths = [params[n] for n in names] chain = samples.get(burn=burn,clip=5) ### Triangle plot #extents = [[0,15e3],[323.6,323.8],[-59.8,-59.7],[0,0.1],[19.5,20.5]] kwargs.setdefault('extents',None) kwargs.setdefault('plot_contours',True) kwargs.setdefault('plot_datapoints',True) kwargs.setdefault('verbose',False) kwargs.setdefault('quantiles',[0.16,0.84]) if len(names) > 1: fig = corner.corner(chain,labels=labels,truths=truths,**kwargs) else: fig = plt.figure() plt.hist(chain,bins=100) plt.xlabel(names[0]) try: text = 'RA,DEC = (%.2f,%.2f)\n'%(results['ra'][0],results['dec'][0]) text += '(m-M,D) = (%.1f, %.0f kpc)\n'%(results['distance_modulus'][0],results['distance'][0]) text += r'$r_h$ = %.1f arcmin'%(results['extension_arcmin'][0])+'\n' text += 'TS = %.1f\n'%results['ts'][0] text += 'NSamples = %i\n'%(len(chain)) #plt.figtext(0.65,0.90,text,ha='left',va='top') except KeyError as e: logger.warning(str(e)) pass label = map(str.capitalize,source.name.split('_')) label[-1] = label[-1].upper() title = '%s'%' '.join(label) plt.suptitle(title) ############################################################