Python pylab 模块,get_cmap() 实例源码

我们从Python开源项目中,提取了以下11个代码示例,用于说明如何使用pylab.get_cmap()

项目:spyking-circus    作者:spyking-circus    | 项目源码 | 文件源码
def view_raw_templates(file_name, n_temp=2, square=True):

    N_e, N_t, N_tm = templates.shape
    if not numpy.iterable(n_temp):
        if square:
            idx = numpy.random.permutation(numpy.arange(N_tm//2))[:n_temp**2]
        else:
            idx = numpy.random.permutation(numpy.arange(N_tm//2))[:n_temp]
    else:
        idx = n_temp

    import matplotlib.colors as colors
    my_cmap   = pylab.get_cmap('winter')
    cNorm     = colors.Normalize(vmin=0, vmax=N_e)
    scalarMap = pylab.cm.ScalarMappable(norm=cNorm, cmap=my_cmap)

    pylab.figure()
    for count, i in enumerate(idx):
        if square:
            pylab.subplot(n_temp, n_temp, count + 1)
            if (numpy.mod(count, n_temp) != 0):
                pylab.setp(pylab.gca(), yticks=[])
            if (count < n_temp*(n_temp - 1)):
                pylab.setp(pylab.gca(), xticks=[])
        else:
            pylab.subplot(len(idx), 1, count + 1)
            if count != (len(idx) - 1):
                pylab.setp(pylab.gca(), xticks=[])
        for j in xrange(N_e):
            colorVal = scalarMap.to_rgba(j)
            pylab.plot(templates[j, :, i], color=colorVal)

        pylab.title('Template %d' %i)
    pylab.tight_layout()
    pylab.show()
项目:spyking-circus-ort    作者:spyking-circus    | 项目源码 | 文件源码
def set_cmap_synthetic(self, cmap):
        self._cmap      = pylab.get_cmap(cmap)
        self._cNorm     = colors.Normalize(vmin=0, vmax=self.nb_cells)
        self._scalarMap_synthetic = pylab.cm.ScalarMappable(norm=self._cNorm, cmap=self._cmap)
项目:spyking-circus-ort    作者:spyking-circus    | 项目源码 | 文件源码
def set_cmap_circus(self, cmap):
        self._cmap      = pylab.get_cmap(cmap)
        self._cNorm     = colors.Normalize(vmin=0, vmax=self.nb_templates)
        self._scalarMap_circus = pylab.cm.ScalarMappable(norm=self._cNorm, cmap=self._cmap)
项目:actinf    作者:x75    | 项目源码 | 文件源码
def plot_nodes_over_data_scattermatrix_hexbin(X, Y, mdl, predictions, distances, activities):
    """plot single components X over Y with SOM sample"""

    idim = X.shape[1]
    odim = Y.shape[1]
    numplots = idim * odim + 2
    fig3 = pl.figure()
    fig3.suptitle("Predictions over data xy scattermatrix/hexbin (%s)" % (mdl.__class__.__name__))
    gs = gridspec.GridSpec(idim, odim)
    fig3axes = []
    for i in range(idim):
        fig3axes.append([])
        for o in range(odim):
            fig3axes[i].append(fig3.add_subplot(gs[i,o]))
    err = 0

    # colsa = ["k", "r", "g", "c", "m", "y"]
    # colsb = ["k", "r", "g", "c", "m", "y"]
    colsa = ["k" for col in range(idim)]
    colsb = ["r" for col in range(odim)]
    for i in range(odim): # odim * 2
        for j in range(idim):
            # pl.subplot(numplots, 1, (i*idim)+j+1)
            ax = fig3axes[j][i]
            # target = Y[h,i]
            # X__ = X_[j] # X[h,j]
            # err += np.sum(np.square(target - prediction))
            # ax.plot(X__, [target], colsa[j] + ".", alpha=0.25, label="target_%d" % i)
            # ax.plot(X__, [prediction[0,i]], colsb[j] + "o", alpha=0.25, label="pred_%d" % i)
            # ax.plot(X[:,j], Y[:,i], colsa[j] + ".", alpha=0.25, label="target_%d" % i)
            ax.hexbin(X[:,j], Y[:,i], gridsize = 20, alpha=0.75, cmap=pl.get_cmap("gray"))
            ax.plot(X[:,j], predictions[:,i], colsb[j] + "o", alpha=0.15, label="pred_%d" % i, markersize=8)
            # pred1 = mdl.filter_e.neuron(mdl.filter_e.flat_to_coords(activities_sorted[-1]))
            # ax.plot(X__, [pred1], "ro", alpha=0.5)
            # pred2 = mdl.filter_e.neuron(mdl.filter_e.flat_to_coords(activities_sorted[-2]))
            # ax.plot(X__, [pred2], "ro", alpha=0.25)
    print("accum total err = %f" % (err / X.shape[0] / (idim * odim)))
    fig3.show()
项目:actinf    作者:x75    | 项目源码 | 文件源码
def plot_hebbsom_links_distances_activations(X, Y, mdl, predictions, distances, activities):
    """plot the hebbian link matrix, and all node distances and activities for all inputs"""


    hebblink_log = np.log(mdl.hebblink_filter.T + 1.0)

    fig4 = pl.figure()
    fig4.suptitle("Debugging SOM: hebbian links, distances, activities (%s)" % (mdl.__class__.__name__))
    gs = gridspec.GridSpec(4, 1)
    # pl.plot(X, Y, "k.", alpha=0.5)
    # pl.subplot(numplots, 1, numplots-1)
    ax1 = fig4.add_subplot(gs[0])
    # im1 = ax1.imshow(mdl.hebblink_filter, interpolation="none", cmap=pl.get_cmap("gray"))
    im1 = ax1.pcolormesh(hebblink_log, cmap=pl.get_cmap("gray"))
    ax1.set_xlabel("in (e)")
    ax1.set_ylabel("out (p)")
    cbar = fig4.colorbar(mappable = im1, ax=ax1, orientation="horizontal")

    ax2 = fig4.add_subplot(gs[1])

    distarray = np.array(distances)
    print("distarray.shape", distarray.shape)
    pcm = ax2.pcolormesh(distarray.T)
    cbar = fig4.colorbar(mappable = pcm, ax=ax2, orientation="horizontal")

    # pl.subplot(numplots, 1, numplots)
    ax3 = fig4.add_subplot(gs[2])
    actarray = np.array(activities)
    print("actarray.shape", actarray.shape)
    pcm = ax3.pcolormesh(actarray.T)
    cbar = fig4.colorbar(mappable = pcm, ax=ax3, orientation="horizontal")

    ax4 = fig4.add_subplot(gs[3])
    ax4.plot(hebblink_log.flatten())

    print("hebblink_log", hebblink_log)

    fig4.show()
项目:LinearCorex    作者:gregversteeg    | 项目源码 | 文件源码
def plot_rels(data, labels=None, colors=None, outfile="rels", latent=None, alpha=0.8, title=''):
    ns, n = data.shape
    if labels is None:
        labels = map(str, range(n))
    ncol = 5
    nrow = int(np.ceil(float(n * (n - 1) / 2) / ncol))

    fig, axs = pylab.subplots(nrow, ncol)
    fig.set_size_inches(5 * ncol, 5 * nrow)
    pairs = list(combinations(range(n), 2))
    if colors is not None:
        colors = (colors - np.min(colors)) / (np.max(colors) - np.min(colors))

    for ax, pair in zip(axs.flat, pairs):
        diff_x = max(data[:, pair[0]]) - min(data[:, pair[0]])
        diff_y = max(data[:, pair[1]]) - min(data[:, pair[1]])
        ax.set_xlim([min(data[:, pair[0]]) - 0.05 * diff_x, max(data[:, pair[0]]) + 0.05 * diff_x])
        ax.set_ylim([min(data[:, pair[1]]) - 0.05 * diff_y, max(data[:, pair[1]]) + 0.05 * diff_y])
        ax.scatter(data[:, pair[0]], data[:, pair[1]], c=colors, cmap=pylab.get_cmap("jet"),
                       marker='.', alpha=alpha, edgecolors='none', vmin=0, vmax=1)

        ax.set_xlabel(shorten(labels[pair[0]]))
        ax.set_ylabel(shorten(labels[pair[1]]))

    for ax in axs.flat[axs.size - 1:len(pairs) - 1:-1]:
        ax.scatter(data[:, 0], data[:, 1], marker='.')

    fig.suptitle(title, fontsize=16)
    pylab.rcParams['font.size'] = 12  #6
    # pylab.draw()
    # fig.set_tight_layout(True)
    pylab.tight_layout()
    pylab.subplots_adjust(top=0.95)
    for ax in axs.flat[axs.size - 1:len(pairs) - 1:-1]:
        ax.set_visible(False)
    filename = outfile + '.png'
    if not os.path.exists(os.path.dirname(filename)):
        os.makedirs(os.path.dirname(filename))
    fig.savefig(outfile + '.png')
    pylab.close('all')
    return True


# Hierarchical graph visualization utilities
项目:bio_corex    作者:gregversteeg    | 项目源码 | 文件源码
def plot_rels(data, labels=None, colors=None, outfile="rels", latent=None, alpha=0.8):
    ns, n = data.shape
    if labels is None:
        labels = list(map(str, range(n)))
    ncol = 5
    # ncol = 4
    nrow = int(np.ceil(float(n * (n - 1) / 2) / ncol))
    #nrow=1
    #pylab.rcParams.update({'figure.autolayout': True})
    fig, axs = pylab.subplots(nrow, ncol)
    fig.set_size_inches(5 * ncol, 5 * nrow)
    #fig.set_canvas(pylab.gcf().canvas)
    pairs = list(combinations(range(n), 2))  #[:4]
    pairs = sorted(pairs, key=lambda q: q[0]**2+q[1]**2)  # Puts stronger relationships first
    if colors is not None:
        colors = (colors - np.min(colors)) / (np.max(colors) - np.min(colors)).clip(1e-7)

    for ax, pair in zip(axs.flat, pairs):
        if latent is None:
            ax.scatter(data[:, pair[0]], data[:, pair[1]], marker='.', edgecolors='none', alpha=alpha)
        else:
            # cs = 'rgbcmykrgbcmyk'
            markers = 'x+.o,<>^^<>,+x.'
            for j, ind in enumerate(np.unique(latent)):
                inds = (latent == ind)
                ax.scatter(data[inds, pair[0]], data[inds, pair[1]], c=colors[inds], cmap=pylab.get_cmap("jet"),
                           marker=markers[j], alpha=0.5, edgecolors='none', vmin=0, vmax=1)

        ax.set_xlabel(shorten(labels[pair[0]]))
        ax.set_ylabel(shorten(labels[pair[1]]))

    for ax in axs.flat[axs.size - 1:len(pairs) - 1:-1]:
        ax.scatter(data[:, 0], data[:, 1], marker='.')

    pylab.rcParams['font.size'] = 12  #6
    pylab.draw()
    #fig.set_tight_layout(True)
    fig.tight_layout()
    for ax in axs.flat[axs.size - 1:len(pairs) - 1:-1]:
        ax.set_visible(False)
    filename = outfile + '.png'
    if not os.path.exists(os.path.dirname(filename)):
        os.makedirs(os.path.dirname(filename))
    fig.savefig(outfile + '.png')  #df')
    pylab.close('all')
    return True
项目:smp_base    作者:x75    | 项目源码 | 文件源码
def plot_nodes_over_data_scattermatrix_hexbin(X, Y, mdl, predictions, distances, activities, saveplot = False):
    """models_actinf.plot_nodes_over_data_scattermatrix_hexbin

    Plot models nodes (if applicable) over the hexbinned data
    expanding dimensions as a scattermatrix.
    """

    idim = X.shape[1]
    odim = Y.shape[1]
    numplots = idim * odim + 2
    fig = pl.figure()
    fig.suptitle("Predictions over data xy scattermatrix/hexbin (%s)" % (mdl.__class__.__name__))
    gs = gridspec.GridSpec(idim, odim)
    figaxes = []
    for i in range(idim):
        figaxes.append([])
        for o in range(odim):
            figaxes[i].append(fig.add_subplot(gs[i,o]))
    err = 0

    # colsa = ["k", "r", "g", "c", "m", "y"]
    # colsb = ["k", "r", "g", "c", "m", "y"]
    colsa = ["k" for col in range(idim)]
    colsb = ["r" for col in range(odim)]
    for i in range(odim): # odim * 2
        for j in range(idim):
            # pl.subplot(numplots, 1, (i*idim)+j+1)
            ax = figaxes[j][i]
            # target = Y[h,i]
            # X__ = X_[j] # X[h,j]
            # err += np.sum(np.square(target - prediction))
            # ax.plot(X__, [target], colsa[j] + ".", alpha=0.25, label="target_%d" % i)
            # ax.plot(X__, [prediction[0,i]], colsb[j] + "o", alpha=0.25, label="pred_%d" % i)
            # ax.plot(X[:,j], Y[:,i], colsa[j] + ".", alpha=0.25, label="target_%d" % i)
            ax.hexbin(X[:,j], Y[:,i], gridsize = 20, alpha=0.75, cmap=pl.get_cmap("gray"))
            ax.plot(X[:,j], predictions[:,i], colsb[j] + "o", alpha=0.15, label="pred_%d" % i, markersize=8)
            # pred1 = mdl.filter_e.neuron(mdl.filter_e.flat_to_coords(activities_sorted[-1]))
            # ax.plot(X__, [pred1], "ro", alpha=0.5)
            # pred2 = mdl.filter_e.neuron(mdl.filter_e.flat_to_coords(activities_sorted[-2]))
            # ax.plot(X__, [pred2], "ro", alpha=0.25)
    # print("accum total err = %f" % (err / X.shape[0] / (idim * odim)))
    if saveplot:
        filename = "plot_nodes_over_data_scattermatrix_hexbin_%s.jpg" % (mdl.__class__.__name__,)
        savefig(fig, filename)
    fig.show()
项目:smp_base    作者:x75    | 项目源码 | 文件源码
def plot_hebbsom_links_distances_activations(X, Y, mdl, predictions, distances, activities, saveplot = False):
    """plot the hebbian link matrix, and all node distances and activities for all inputs"""


    hebblink_log = np.log(mdl.hebblink_filter.T + 1.0)

    fig = pl.figure()
    fig.suptitle("Debugging SOM: hebbian links, distances, activities (%s)" % (mdl.__class__.__name__))
    gs = gridspec.GridSpec(4, 1)
    # pl.plot(X, Y, "k.", alpha=0.5)
    # pl.subplot(numplots, 1, numplots-1)
    ax1 = fig.add_subplot(gs[0])
    ax1.set_title('hebbian associative links')
    # im1 = ax1.imshow(mdl.hebblink_filter, interpolation="none", cmap=pl.get_cmap("gray"))
    im1 = ax1.pcolormesh(hebblink_log, cmap=pl.get_cmap("gray"))
    ax1.set_xlabel("in (e)")
    ax1.set_ylabel("out (p)")
    cbar = fig.colorbar(mappable = im1, ax=ax1, orientation="horizontal")

    ax2 = fig.add_subplot(gs[1])
    ax2.set_title('distances over time')

    distarray = np.array(distances)
    # print("distarray.shape", distarray.shape)
    pcm = ax2.pcolormesh(distarray.T)
    cbar = fig.colorbar(mappable = pcm, ax=ax2, orientation="horizontal")

    # pl.subplot(numplots, 1, numplots)
    ax3 = fig.add_subplot(gs[2])
    ax3.set_title('activations propagated via hebbian links')
    actarray = np.array(activities)
    # print("actarray.shape", actarray.shape)
    pcm = ax3.pcolormesh(actarray.T)
    cbar = fig.colorbar(mappable = pcm, ax=ax3, orientation="horizontal")

    ax4 = fig.add_subplot(gs[3])
    ax4.set_title('flattened link table')
    ax4.plot(hebblink_log.flatten())

    # print("hebblink_log", hebblink_log)

    if saveplot:
        filename = "plot_hebbsom_links_distances_activations_%s.jpg" % (mdl.__class__.__name__,)
        savefig(fig, filename)
    fig.show()
项目:smp_base    作者:x75    | 项目源码 | 文件源码
def plot_predictions_over_data(X, Y, mdl, saveplot = False, ax = None, datalim = 1000):
    do_hexbin = False
    if X.shape[0] > 4000:
        do_hexbin = False # True
        X = X[-4000:]
        Y = Y[-4000:]
    # plot prediction
    idim = X.shape[1]
    odim = Y.shape[1]
    numsamples = 1 # 2
    Y_samples = []
    for i in range(numsamples):
        Y_samples.append(mdl.predict(X))
    # print("Y_samples[0]", Y_samples[0])

    fig = pl.figure()
    fig.suptitle("Predictions over data xy (numsamples = %d, (%s)" % (numsamples, mdl.__class__.__name__))
    gs = gridspec.GridSpec(odim, 1)

    for i in range(odim):
        ax = fig.add_subplot(gs[i])
        target     = Y[:,i]

        if do_hexbin:
            ax.hexbin(X, Y, gridsize = 20, alpha=1.0, cmap=pl.get_cmap("gray"))
        else:
            ax.plot(X, target, "k.", label="Y_", alpha=0.5)
        for j in range(numsamples):
            prediction = Y_samples[j][:,i]
            # print("X", X.shape, "prediction", prediction.shape)
            # print("X", X, "prediction", prediction)
            if do_hexbin:
                ax.hexbin(X[:,i], prediction, gridsize = 30, alpha=0.6, cmap=pl.get_cmap("Reds"))
            else:
                ax.plot(X[:,i], prediction, "r.", label="Y_", alpha=0.25)

        # get limits
        xlim = ax.get_xlim()
        ylim = ax.get_ylim()
        error = target - prediction
        mse   = np.mean(np.square(error))
        mae   = np.mean(np.abs(error))
        xran = xlim[1] - xlim[0]
        yran = ylim[1] - ylim[0]
        ax.text(xlim[0] + xran * 0.1, ylim[0] + yran * 0.3, "mse = %f" % mse)
        ax.text(xlim[0] + xran * 0.1, ylim[0] + yran * 0.5, "mae = %f" % mae)

    if saveplot:
        filename = "plot_predictions_over_data_%s.jpg" % (mdl.__class__.__name__,)
        savefig(fig, filename)

    fig.show()
项目:chainer-speech-recognition    作者:musyoku    | 项目源码 | 文件源码
def _plot_features(out_dir, signal, sampling_rate, logmel, delta, delta_delta, specgram, filename):
    try:
        os.makedirs(out_dir)
    except:
        pass

    sampling_interval = 1.0 / sampling_rate
    times = np.arange(len(signal)) * sampling_interval
    pylab.clf()
    plt.rcParams['font.size'] = 18
    pylab.figure(figsize=(len(signal) / 2000, 16)) 

    ax1 = pylab.subplot(511)
    pylab.plot(times, signal)
    pylab.title("Waveform")
    pylab.xlabel("Time [sec]")
    pylab.ylabel("Amplitude")
    pylab.xlim([0, len(signal) * sampling_interval])

    ax2 = pylab.subplot(512)
    specgram = np.log(specgram)
    pylab.pcolormesh(np.arange(0, specgram.shape[0]), np.arange(0, specgram.shape[1]) * 8000 / specgram.shape[1], specgram.T, cmap=pylab.get_cmap("jet"))
    pylab.title("Spectrogram")
    pylab.xlabel("Time [sec]")
    pylab.ylabel("Frequency [Hz]")
    pylab.colorbar()

    ax3 = pylab.subplot(513)
    pylab.pcolormesh(np.arange(0, logmel.shape[0]), np.arange(1, 41), logmel.T, cmap=pylab.get_cmap("jet"))
    pylab.title("Log mel filter bank features")
    pylab.xlabel("Frame")
    pylab.ylabel("Filter number")
    pylab.colorbar()

    ax4 = pylab.subplot(514)
    pylab.pcolormesh(np.arange(0, delta.shape[0]), np.arange(1, 41), delta.T, cmap=pylab.get_cmap("jet"))
    pylab.title("Deltas")
    pylab.xlabel("Frame")
    pylab.ylabel("Filter number")
    pylab.colorbar()

    ax5 = pylab.subplot(515)
    pylab.pcolormesh(np.arange(0, delta_delta.shape[0]), np.arange(1, 41), delta_delta.T, cmap=pylab.get_cmap("jet"))
    pylab.title("Delta-deltas")
    pylab.xlabel("Frame")
    pylab.ylabel("Filter number")
    pylab.colorbar()

    pylab.tight_layout()
    pylab.savefig(os.path.join(out_dir, filename), bbox_inches="tight")