Python pylab 模块,axvline() 实例源码

我们从Python开源项目中,提取了以下6个代码示例,用于说明如何使用pylab.axvline()

项目:astromalign    作者:dstndstn    | 项目源码 | 文件源码
def edgescatter(self, ps):
        for ei,X in enumerate(self.edges):
            i,j = X[:2]
            matchdRA, matchdDec = X[10:12]
            mu = X[9]
            A = self.alignments[ei]

            plt.clf()
            if len(matchdRA) > 1000:
                plothist(matchdRA, matchdDec, 101)
            else:
                plt.plot(matchdRA, matchdDec, 'k.', alpha=0.5)
            plt.axvline(0, color='0.5')
            plt.axhline(0, color='0.5')
            plt.axvline(mu[0], color='b')
            plt.axhline(mu[1], color='b')
            for nsig in [1,2]:
                X,Y = A.getContours(nsigma=nsig)
                plt.plot(X, Y, 'b-')
            plt.xlabel('delta-RA (arcsec)')
            plt.ylabel('delta-Dec (arcsec)')
            plt.axis('scaled')
            ps.savefig()
项目:PyME    作者:vikramsunkara    | 项目源码 | 文件源码
def plot_2D_contour(states,p,labels,inter=False):
    import pylab as pl

    from pyme.statistics import expectation as EXP
    exp = EXP((states,p)) 
    X = np.unique(states[0,:])
    Y = np.unique(states[1,:])
    X_len = len(X)
    Y_len = len(Y)
    Z = np.zeros((X.max()+1,Y.max()+1))
    for i in range(len(p)):
        Z[states[0,i],states[1,i]] = p[i]

    Z = np.where(Z < 1e-8,0.0,Z)
    pl.clf()
    XX, YY = np.meshgrid(X,Y)   
    pl.contour(range(X.max()+1),range(Y.max()+1),Z.T)
    pl.axhline(y=exp[1])
    pl.axvline(x=exp[0])
    pl.xlabel(labels[0])
    pl.ylabel(labels[1])
    if inter == True:
        pl.draw()
    else:
        pl.show()
项目:astromalign    作者:dstndstn    | 项目源码 | 文件源码
def plotalignment(A, nbins=200, M=None, rng=None, doclf=True, docolorbar=True,
                  docutcircle=True, docontours=True, dologhist=False,
                  doaxlines=False, imshowargs={}):
    import pylab as plt
    from astrometry.util.plotutils import plothist, loghist
    if doclf:
        plt.clf()
    if M is None:
        M = A.match
    if dologhist:
        f = loghist
    else:
        f = plothist
    H,xe,ye = f(M.dra_arcsec*1000., M.ddec_arcsec*1000., nbins,
                range=rng, doclf=doclf, docolorbar=docolorbar,
                imshowargs=imshowargs)
    ax = plt.axis()
    if A is not None:
        # The EM fit is based on a subset of the matches;
        # draw the subset cut circle.
        if docutcircle:
            angle = np.linspace(0, 2.*pi, 360)
            plt.plot((A.cutcenter[0] + A.cutrange * np.cos(angle))*1000.,
                     (A.cutcenter[1] + A.cutrange * np.sin(angle))*1000., 'r-')
        if docontours:
            for i,c in enumerate(['b','c','g']*2):
                if i == A.ngauss:
                    break
                for nsig in [1,2]:
                    XY = A.getContours(nsig, c=i)
                    if XY is None:
                        break
                    X,Y = XY
                    plt.plot(X*1000., Y*1000., '-', color=c)#, alpha=0.5)
    if doaxlines:
        plt.axhline(0., color='b', alpha=0.5)
        plt.axvline(0., color='b', alpha=0.5)
    plt.axis(ax)
    plt.xlabel('dRA (mas)')
    plt.ylabel('dDec (mas)')
    return H,xe,ye
项目:PyME    作者:vikramsunkara    | 项目源码 | 文件源码
def plot_marginals(state_space,p,name,t,labels = False):
    import matplotlib
    #matplotlib.use("PDF")
    #matplotlib.rcParams['figure.figsize'] = 5,10
    import matplotlib.pyplot as pl
    pl.suptitle("time: "+ str(t)+" units")
    print("time : "+ str(t))

    D = state_space.shape[1]

    for i in range(D):
        marg_X = np.unique(state_space[:,i])
        A = np.where(marg_X[:,np.newaxis] == state_space[:,i].T[np.newaxis,:],1,0)
        marg_p = np.dot(A,p)
        pl.subplot(int(D/2)+1,2,i+1)
        pl.plot(marg_X,marg_p)
        pl.axvline(np.sum(marg_X*marg_p),color= 'r')
        pl.axvline(marg_X[np.argmax(marg_p)],color='g')
        if labels == False:
            pl.xlabel("Specie: " + str(i+1))
        else:
            pl.xlabel(labels[i])
    #pl.savefig("Visuals/marginal_"+name+".pdf",format='pdf')
    pl.show()
    pl.clf()

##Simple Compress : best N-term approximation under the ell_1 norm
#@param state_space the state space shape: (Number of Species X Number of states) 
#@param p probability vector
#@param eps the ell_1 error to remove
#@return -Compressed state space
#       -Compressed Probs
项目:PyME    作者:vikramsunkara    | 项目源码 | 文件源码
def plot_marginals(state_space,p,name,t,labels = False,interactive = False):
    import matplotlib

    import matplotlib.pyplot as pl
    if interactive == True: 
        pl.ion()
    pl.clf()
    pl.suptitle("time: "+ str(t)+" units")
    #print("time : "+ str(t))
    D = state_space.shape[1]

    for i in range(D):
        marg_X = np.unique(state_space[:,i])
        A = np.where(marg_X[:,np.newaxis] == state_space[:,i].T[np.newaxis,:],1,0)
        marg_p = np.dot(A,p)
        pl.subplot(int(D/2)+1,2,i+1)
        pl.plot(marg_X,marg_p)
        pl.yticks(np.linspace(np.amin(marg_p), np.amax(marg_p), num=3))
        pl.axvline(np.sum(marg_X*marg_p),color= 'r')
        pl.axvline(marg_X[np.argmax(marg_p)],color='g')
        if labels == False:
            pl.xlabel("Specie: " + str(i+1))
        else:
            pl.xlabel(labels[i])
    if interactive == True:
        pl.draw()
    else:
        pl.tight_layout()
        pl.show()
项目:livespin    作者:biocompibens    | 项目源码 | 文件源码
def plotAgainstGFP(self, extradataA = [], extradataG = [], intensity = [], seq = []):
        fig1 = pylab.figure(figsize = (25, 10))
        print len(self.GFP)
        for i in xrange(min(len(data.cat), 3)):
            print len(self.GFP[self.categories == i])
            vect = []
            pylab.subplot(1,3,i+1)
            #pylab.hist(self.GFP[self.categories == i], bins = 20, color = data.colors[i])
            pop = self.GFP[self.categories == i]
            pylab.plot(self.GFP[self.categories == i], self.angles[self.categories == i], data.colors[i]+'o', markersize = 8)#, label = data.cat[i])
            print "cat", i, "n pop", len(self.GFP[(self.categories == i) & (self.GFP > -np.log(12.5))])
            x = np.linspace(np.min(self.GFP[self.categories == i]), np.percentile(self.GFP[self.categories == i], 80),40)
            #fig1.canvas.mpl_connect('pick_event', onpick)
            for j in x:
                vect.append(np.median(self.angles[(self.GFP > j) & (self.categories == i)]))

            pylab.plot([-4.5, -0.5], [vect[0], vect[0]], data.colors[i], label = "mediane de la population entiere", linewidth = 5)
            print vect[0], vect[np.argmax(x > -np.log(12.5))]
            pylab.plot([-np.log(12.5), -0.5], [vect[np.argmax(x > -np.log(12.5))] for k in  [0,1]], data.colors[i], label = "mediane de la population de droite", linewidth = 5, ls = '--')
            pylab.axvline(x = -np.log(12.5), color = 'm', ls = '--', linewidth = 3)
            pylab.xlim([-4.5, -0.5])
            pylab.legend(loc = 2, prop = {'size':17})

            pylab.title(data.cat[i].split(',')[0], fontsize = 24)
            pylab.xlabel('score GFP', fontsize = 20)
            pylab.ylabel('Angle (degre)', fontsize = 20)
            pylab.tick_params(axis='both', which='major', labelsize=20)
            pylab.ylim([-5, 105])
            ##pylab.xscale('log')
        pylab.show()