我们从Python开源项目中,提取了以下8个代码示例,用于说明如何使用pylab.semilogy()。
def show(self): # pl.semilogy(self.theta, self.omega) # , label = '$L =%.1f m, $'%self.l + '$dt = %.2f s, $'%self.dt + '$\\theta_0 = %.2f radians, $'%self.theta[0] + '$q = %i, $'%self.q + '$F_D = %.2f, $'%self.F_D + '$\\Omega_D = %.1f$'%self.Omega_D) pl.plot(self.theta_phase ,self.omega_phase, '.', label = '$t \\approx 2\\pi n / \\Omega_D$') pl.xlabel('$\\theta$ (radians)') pl.ylabel('$\\omega$ (radians/s)') pl.legend() # pl.text(-1.4, 0.3, '$\\omega$ versus $\\theta$ $F_D = 1.2$', fontsize = 'x-large') pl.title('Chaotic Regime') # pl.show() # pl.semilogy(self.time_array, self.delta) # pl.legend(loc = 'upper center', fontsize = 'small') # pl.xlabel('$time (s)$') # pl.ylabel('$\\Delta\\theta (radians)$') # pl.xlim(0, self.T) # pl.ylim(float(input('ylim-: ')),float(input('ylim+: '))) # pl.ylim(1E-11, 0.01) # pl.text(4, -0.15, 'nonlinear pendulum - Euler-Cromer method') # pl.text(10, 1E-3, '$\\Delta\\theta versus time F_D = 0.5$') # pl.title('Simple Harmonic Motion') pl.title('Chaotic Regime')
def show_log(self): # pl.subplot(121) pl.semilogy(self.time_array, self.delta, 'c') pl.xlabel('$time (s)$') pl.ylabel('$\\Delta\\theta$ (radians)') pl.xlim(0, self.T) # pl.ylim(1E-11, 0.01) pl.text(42, 1E-7, '$\\Delta\\theta$ versus time $F_D = 1.2$', fontsize = 'x-large') pl.title('Chaotic Regime') pl.show() # def show_log_sub122(self): # pl.subplot(122) # pl.semilogy(self.time_array, self.delta, 'g') # pl.xlabel('$time (s)$') # pl.ylabel('$\\Delta\\theta$ (radians)') # pl.xlim(0, self.T) # pl.ylim(1E-6, 100) # pl.text(20, 1E-5, '$\\Delta\\theta$ versus time $F_D = 1.2$', fontsize = 'x-large') # pl.title('Chaotic Regime') # pl.show()
def show(self): # pl.semilogy(self.theta, self.omega) # , label = '$L =%.1f m, $'%self.l + '$dt = %.2f s, $'%self.dt + '$\\theta_0 = %.2f radians, $'%self.theta[0] + '$q = %i, $'%self.q + '$F_D = %.2f, $'%self.F_D + '$\\Omega_D = %.1f$'%self.Omega_D) pl.plot(self.time_array,self.delta) # pl.show() # pl.semilogy(self.time_array, self.delta) # pl.legend(loc = 'upper center', fontsize = 'small') # pl.xlabel('$time (s)$') # pl.ylabel('$\\Delta\\theta (radians)$') # pl.xlim(0, self.T) # pl.ylim(float(input('ylim-: ')),float(input('ylim+: '))) # pl.ylim(1E-11, 0.01) # pl.text(4, -0.15, 'nonlinear pendulum - Euler-Cromer method') # pl.text(10, 1E-3, '$\\Delta\\theta versus time F_D = 0.5$') # pl.title('Simple Harmonic Motion') # pl.title('Chaotic Regime')
def plot_delta(self): pl.figure(figsize = (8, 8)) pl.semilogy(self.tprime, self.deltatheta, 'r') # pl.ylim(0.0001, 0.1) # pl.ylim(0.0001, 10) pl.xlim(0, 100) pl.ylabel('$\\Delta\\theta$ (radians)') pl.xlabel('time (yr)') pl.title('Hyperion $\\theta$ versus time') pl.text(4.1, 3e3, 'Ellipitical orbit')
def plot_delta(self): pl.figure(figsize = (8, 8)) pl.semilogy(self.tprime, self.deltatheta, 'r.') # pl.ylim(0.0001, 0.1) pl.ylim(0.0001, 10) pl.xlim(0, 10) pl.ylabel('$\\Delta\\theta$ (radians)') pl.xlabel('time (yr)') pl.title('Hyperion $\\theta$ versus time') pl.text(4.1, 2e-4, 'Ellipitical orbit')
def plot_delta(self): pl.figure(figsize = (8, 8)) pl.semilogy(self.tprime, self.deltatheta, 'r') # pl.ylim(0.0001, 0.1) # pl.ylim(0.0001, 0.1) pl.xlim(0, 100) pl.ylabel('$\\Delta\\theta$ (radians)') pl.xlabel('time (yr)') pl.title('Hyperion $\\theta$ versus time') pl.text(4.1, 0.05, 'Circular orbit')
def plot_losses(conf,losses_list,builder,name=''): unique_id = builder.get_unique_id() savedir = 'losses' if not os.path.exists(savedir): os.makedirs(savedir) save_path = os.path.join(savedir,'{}_loss_{}.png'.format(name,unique_id)) pl.figure() for losses in losses_list: pl.semilogy(losses) pl.xlabel('Epoch') pl.ylabel('Loss') pl.grid() pl.savefig(save_path)