Python pylab 模块,pcolormesh() 实例源码

我们从Python开源项目中,提取了以下4个代码示例,用于说明如何使用pylab.pcolormesh()

项目:actinf    作者:x75    | 项目源码 | 文件源码
def plot_colormeshmatrix_reduced(
        X, Y, ymin = None, ymax = None,
        title = "plot_colormeshmatrix_reduced"):

    print "plot_colormeshmatrix_reduced X.shape", X.shape, "Y.shape", Y.shape
    # input_cols  = [i for i in df.columns if i.startswith("X")]
    # output_cols = [i for i in df.columns if i.startswith("Y")]
    # Xs = df[input_cols]
    # Ys = df[output_cols]

    # numsamples = df.shape[0]
    # print "plot_scattermatrix_reduced: numsamples = %d" % numsamples

    # # numplots = Xs.shape[1] * Ys.shape[1]
    # # print "numplots = %d" % numplots

    cbar_orientation = "vertical" # "horizontal"
    gs = gridspec.GridSpec(Y.shape[2], X.shape[2]/2)
    pl.ioff()
    fig = pl.figure()
    fig.suptitle(title)
    # # alpha = 1.0 / np.power(numsamples, 1.0/(Xs.shape[1] - 0))
    # alpha = 0.2
    # print "alpha", alpha
    # cols = ["k", "b", "r", "g", "c", "m", "y"]
    for i in range(X.shape[2]/2):
        for j in range(Y.shape[2]):
            # print "i, j", i, j, Xs, Ys
            ax = fig.add_subplot(gs[j, i])
            pcm = ax.pcolormesh(X[:,:,i], X[:,:,X.shape[2]/2+i], Y[:,:,j], vmin = ymin, vmax = ymax)
            # ax.plot(Xs.as_matrix()[:,i], Ys.as_matrix()[:,j], "ko", alpha = alpha)
            ax.set_xlabel("goal")
            ax.set_ylabel("error")
            cbar = fig.colorbar(mappable = pcm, ax=ax, orientation=cbar_orientation)
            ax.set_aspect(1)
    if SAVEPLOTS:
        fig.savefig("fig_%03d_colormeshmatrix_reduced.pdf" % (fig.number), dpi=300)
    fig.show()
项目:chainer-speech-recognition    作者:musyoku    | 项目源码 | 文件源码
def _plot_features(out_dir, signal, sampling_rate, logmel, delta, delta_delta, specgram, filename):
    try:
        os.makedirs(out_dir)
    except:
        pass

    sampling_interval = 1.0 / sampling_rate
    times = np.arange(len(signal)) * sampling_interval
    pylab.clf()
    plt.rcParams['font.size'] = 18
    pylab.figure(figsize=(len(signal) / 2000, 16)) 

    ax1 = pylab.subplot(511)
    pylab.plot(times, signal)
    pylab.title("Waveform")
    pylab.xlabel("Time [sec]")
    pylab.ylabel("Amplitude")
    pylab.xlim([0, len(signal) * sampling_interval])

    ax2 = pylab.subplot(512)
    specgram = np.log(specgram)
    pylab.pcolormesh(np.arange(0, specgram.shape[0]), np.arange(0, specgram.shape[1]) * 8000 / specgram.shape[1], specgram.T, cmap=pylab.get_cmap("jet"))
    pylab.title("Spectrogram")
    pylab.xlabel("Time [sec]")
    pylab.ylabel("Frequency [Hz]")
    pylab.colorbar()

    ax3 = pylab.subplot(513)
    pylab.pcolormesh(np.arange(0, logmel.shape[0]), np.arange(1, 41), logmel.T, cmap=pylab.get_cmap("jet"))
    pylab.title("Log mel filter bank features")
    pylab.xlabel("Frame")
    pylab.ylabel("Filter number")
    pylab.colorbar()

    ax4 = pylab.subplot(514)
    pylab.pcolormesh(np.arange(0, delta.shape[0]), np.arange(1, 41), delta.T, cmap=pylab.get_cmap("jet"))
    pylab.title("Deltas")
    pylab.xlabel("Frame")
    pylab.ylabel("Filter number")
    pylab.colorbar()

    ax5 = pylab.subplot(515)
    pylab.pcolormesh(np.arange(0, delta_delta.shape[0]), np.arange(1, 41), delta_delta.T, cmap=pylab.get_cmap("jet"))
    pylab.title("Delta-deltas")
    pylab.xlabel("Frame")
    pylab.ylabel("Filter number")
    pylab.colorbar()

    pylab.tight_layout()
    pylab.savefig(os.path.join(out_dir, filename), bbox_inches="tight")
项目:ugali    作者:DarkEnergySurvey    | 项目源码 | 文件源码
def densityPlot(targ_ra, targ_dec, data, iso, g_radius, nbhd, type):
    """Stellar density plot"""

    mag_g = data[mag_g_dred_flag]
    mag_r = data[mag_r_dred_flag]

    if type == 'stars':
        filter = star_filter(data)
        plt.title('Stellar Density')
    elif type == 'galaxies':
        filter = galaxy_filter(data)
        plt.title('Galactic Density')
    elif type == 'blue_stars':
        filter = blue_star_filter(data)
        plt.title('Blue Stellar Density')

    iso_filter = (iso.separation(mag_g, mag_r) < 0.1)

    # projection of image
    proj = ugali.utils.projector.Projector(targ_ra, targ_dec)
    x, y = proj.sphereToImage(data[filter & iso_filter]['RA'], data[filter & iso_filter]['DEC']) # filter & iso_filter

    bound = 0.5 #1.
    steps = 100.
    bins = np.linspace(-bound, bound, steps)

    signal = np.histogram2d(x, y, bins=[bins, bins])[0]

    sigma = 0.01 * (0.25 * np.arctan(0.25*g_radius*60. - 1.5) + 1.3) # full range, arctan

    convolution = scipy.ndimage.filters.gaussian_filter(signal, sigma/(bound/steps))
    plt.pcolormesh(bins, bins, convolution.T, cmap='Greys')

    plt.xlim(bound, -bound)
    plt.ylim(-bound, bound)
    plt.gca().set_aspect('equal')
    plt.xlabel(r'$\Delta \alpha$ (deg)')
    plt.ylabel(r'$\Delta \delta$ (deg)')

    ax = plt.gca()
    divider = make_axes_locatable(ax)
    cax = divider.append_axes('right', size = '5%', pad=0)
    plt.colorbar(cax=cax)
项目:ugali    作者:DarkEnergySurvey    | 项目源码 | 文件源码
def hessPlot(targ_ra, targ_dec, data, iso, g_radius, nbhd):
    """Hess plot"""

    mag_g = data[mag_g_dred_flag]
    mag_r = data[mag_r_dred_flag]

    filter_s = star_filter(data)

    plt.title('Hess')

    c1 = SkyCoord(targ_ra, targ_dec, unit='deg')

    r_near = 2.*g_radius # annulus begins at 3*g_radius away from centroid
    r_far = np.sqrt(5.)*g_radius # annulus has same area as inner area

    inner = (c1.separation(SkyCoord(data['RA'], data['DEC'], unit='deg')).deg < g_radius)
    outer = (c1.separation(SkyCoord(data['RA'], data['DEC'], unit='deg')).deg > r_near) & (c1.separation(SkyCoord(data['RA'], data['DEC'], unit='deg')).deg < r_far)

    xbins = np.arange(-0.5, 1.1, 0.1)
    ybins = np.arange(16., 24.5, 0.5)

    foreground = np.histogram2d(mag_g[inner & filter_s] - mag_r[inner & filter_s], mag_g[inner & filter_s], bins=[xbins, ybins])
    background = np.histogram2d(mag_g[outer & filter_s] - mag_r[outer & filter_s], mag_g[outer & filter_s], bins=[xbins, ybins])

    fg = foreground[0].T
    bg = background[0].T

    fg_abs = np.absolute(fg)
    bg_abs = np.absolute(bg)

    mask_abs = fg_abs + bg_abs
    mask_abs[mask_abs == 0.] = np.nan # mask signficiant zeroes

    signal = fg - bg
    signal = np.ma.array(signal, mask=np.isnan(mask_abs)) # mask nan

    cmap = matplotlib.cm.viridis
    cmap.set_bad('w', 1.)
    plt.pcolormesh(xbins, ybins, signal, cmap=cmap)

    plt.colorbar()

    ugali.utils.plotting.drawIsochrone(iso, lw=2, c='k', zorder=10, label='Isocrhone')

    plt.axis([-0.5, 1.0, 16, 24])
    plt.gca().invert_yaxis()
    plt.gca().set_aspect(1./4.)
    plt.xlabel('g-r (mag)')
    plt.ylabel('g (mag)')

    #ax = plt.gca()
    #divider = make_axes_locatable(ax)
    #cax = divider.append_axes('right', size = '5%', pad=0)
    #plt.colorbar(cax=cax)