我们从Python开源项目中,提取了以下4个代码示例,用于说明如何使用pylab.imread()。
def getSDSSImage(ra,dec,radius=1.0,xsize=800,opt='GML',**kwargs): """ Download Sloan Digital Sky Survey images http://skyserver.sdss3.org/dr9/en/tools/chart/chart.asp radius (degrees) opts: (G) Grid, (L) Label, P (PhotoObj), S (SpecObj), O (Outline), (B) Bounding Box, (F) Fields, (M) Mask, (Q) Plates, (I) Invert """ import subprocess import tempfile url="http://skyservice.pha.jhu.edu/DR10/ImgCutout/getjpeg.aspx?" scale = 2. * radius * 3600. / xsize params=dict(ra=ra,dec=dec, width=xsize,height=xsize, scale=scale,opt=opt) query='&'.join("%s=%s"%(k,v) for k,v in params.items()) tmp = tempfile.NamedTemporaryFile(suffix='.jpeg') cmd='wget --progress=dot:mega -O %s "%s"'%(tmp.name,url+query) subprocess.call(cmd,shell=True) im = pylab.imread(tmp.name) tmp.close() return im
def __init__(self, content_path, style_path): # 4D representations of the given content and style images self.content_image = utils.preprocess(plt.imread(content_path))[np.newaxis] self.style_image = utils.preprocess(plt.imread(style_path))[np.newaxis] # The session and graph used for evaluating the content and style of the # given content and style images self.evaluation_g = tf.Graph() self.evaluation_sess = tf.Session(graph=self.evaluation_g) # The outputs (:0) of the intermediate layers of the VGG16 model used to represent the # content and style of an input to the model self.content_layer = config["content_layer"] self.style_layers = config["style_layers"] with self.evaluation_g.as_default(): # Import the VGG16 ImageNet predictor model graph into the evaluation_g member variable tf.import_graph_def(utils.get_vgg_model(), name="vgg") # The input to the VGG16 predictor model is the output (:0) of the first operation of the graph self.input_tensor = [op.name for op in self.evaluation_g.get_operations()][0] + ":0"
def __init__(self, lens_file=None, lens_psf_size=None, lens_grid_size=None): if lens_file: self.lens = True grid = scipy.misc.imread(lens_file, flatten=True) if np.max(grid) > 255: grid /= 2**(16-1) else: grid /= 255 self.grid_gpu = cu.matrix_to_array(grid, 'C') self.lens_psf_size = lens_psf_size self.lens_grid_size = lens_grid_size else: self.lens = False
def getDSSImage(ra,dec,radius=1.0,xsize=800,**kwargs): """ Download Digitized Sky Survey images https://archive.stsci.edu/cgi-bin/dss_form https://archive.stsci.edu/cgi-bin/dss_search Image is in celestial orientation (RA increases to the right) https://archive.stsci.edu/dss/script_usage.html ra (r) - right ascension dec (d) - declination equinox (e) - equinox (B1950 or J2000; default: J2000) height (h) - height of image (arcminutes; default: 15.0) width (w) - width of image (arcminutes; default: 15.0) format (f) - image format (FITS or GIF; default: FITS) compression (c) - compression (UNIX, GZIP, or NONE; default: NONE; compression applies to FITS only) version (v) - Which version of the survey to use: 1 - First Generation survey (garden variety) 2 - Second generation survey (incomplete) 3 - Check the 2nd generation; if no image is available, then go to the 1st generation. 4 - The Quick V survey (whence came the Guide Stars Catalog; used mostly for Phase II proposal submission) save (s) - Save the file to disk instead of trying to display. (ON (or anything) or not defined; default: not defined.) """ import subprocess import tempfile url="https://archive.stsci.edu/cgi-bin/dss_search?" scale = 2.0 * radius * 60. params=dict(ra='%.3f'%ra,dec='%.3f'%dec,width=scale,height=scale, format='gif',version=1) #v='poss2ukstu_red' query='&'.join("%s=%s"%(k,v) for k,v in params.items()) tmp = tempfile.NamedTemporaryFile(suffix='.gif') cmd='wget --progress=dot:mega -O %s "%s"'%(tmp.name,url+query) subprocess.call(cmd,shell=True) im = pylab.imread(tmp.name) tmp.close() if xsize: im = scipy.misc.imresize(im,size=(xsize,xsize)) return im ############################################################