我们从Python开源项目中,提取了以下20个代码示例,用于说明如何使用rq.Connection()。
def worker(config_uri): """ Console entry script that starts a worker process """ # TODO: import spacy's model to share it between workers pyramid_env = bootstrap(config_uri) # this conflicts with normal worker output # TODO: solve logging for the console # Setup logging to allow log output from command methods # from pyramid.paster import setup_logging # setup_logging(config_uri) try: qs = ['default'] conn = redis_connection() with Connection(conn): w = Worker(qs) w.work() finally: pyramid_env['closer']()
def worker(): with Connection(Redis("jobqueue.local")): qs = sys.argv[1:] or ['default'] print("foo") w = Worker(qs) w.work()
def main(): """ Init workers """ parser = argparse.ArgumentParser() parser.add_argument('--queues', nargs='+', type=unicode, dest='queues', required=True) args = parser.parse_args() with Connection(connection=StrictRedis(**settings.REDIS)): qs = map(Queue, args.queues) or [Queue()] worker = Worker(qs) worker.work()
def main(): with Connection(redis_connection): worker = Worker(Queue('default')) worker.work()
def main(config): global worker_config worker_config = config listen = config["listen"].values() queue_dsn = config["queue"]["dsn"] conn = redis.from_url(queue_dsn) with Connection(conn): worker = Worker(map(Queue, listen)) worker.work()
def main(config=None): listen = config["listen"].values() queue_dsn = config["queue"]["dsn"] conn = redis.from_url(queue_dsn) with Connection(conn): worker = Worker(map(Queue, listen)) worker.work()
def main(): with Connection(Redis(settings['redis server'])): qs = ['default'] w = Worker(qs) w.work()
def main(cli_config, raw, by_queue, queues, **options): """RQ command-line monitor.""" try: with Connection(redis_conn): refresh(0.1, show_prism_info, queues, raw, by_queue, cli_config.queue_class, cli_config.worker_class) except ConnectionError as e: click.echo(e) sys.exit(1) except KeyboardInterrupt: click.echo() sys.exit(0)
def runworker(app): REDIS_HOST = app.config['REDIS_HOST'] REDIS_PORT = app.config['REDIS_PORT'] REDIS_DB = app.config['REDIS_DB'] QUEUES = app.config['QUEUES'] redis_conn = Connection(Redis(REDIS_HOST, REDIS_PORT, REDIS_DB)) with redis_conn: w = Worker(QUEUES) w.work()
def __init__(self): super(TrainCenter, self).__init__() info = config['pubsub'] self.host = info[0] self.port = int(info[1]) self.raw_conn = redis.StrictRedis(host=self.host, port=self.port, db=0) self.conn = Connection(self.raw_conn) self.train_sessions = []
def __init__(self): self.measure_helper = MeasureHelper() self.r = None self.p = None self.rc = None self.group_dict = {} # group_id : Group object info = config['pubsub'] host = info[0] port = int(info[1]) self.raw_conn = redis.StrictRedis(host=host, port=port, db=0) self.conn = Connection(self.raw_conn)
def launch_rq_worker() -> None: """ Blocking function to launch a worker using Python RQ's internal API """ with Connection(): w = Worker( get_available_rq_worker_name() ) w.work()
def run_worker(): """Initializes a slim rq task queue.""" listen = ['default'] conn = Redis( host=app.config['RQ_DEFAULT_HOST'], port=app.config['RQ_DEFAULT_PORT'], db=0, password=app.config['RQ_DEFAULT_PASSWORD']) with Connection(conn): worker = Worker(map(Queue, listen)) worker.work()
def work(): print("Hello from the worker side.") with Connection(REDIS): worker = Worker(map(Queue, QUEUES)) worker.work()
def start_worker(queue_name): print "starting worker '{}'...".format(queue_name) with Connection(redis_rq_conn): worker = Worker(Queue(queue_name), exc_handler=failed_job_handler) worker.work()
def main(): utils.setup_logging() config.log() gh_pr.monkeypatch_github() if config.FLUSH_REDIS_ON_STARTUP: utils.get_redis().flushall() with rq.Connection(utils.get_redis()): worker = rq.worker.HerokuWorker([rq.Queue('default')], exception_handlers=[error_handler]) worker.work()
def create_base_learner(id): """This creates a single base learner from a base learner origin and queues it up""" path = functions.get_path_from_query_string(request) with functions.DBContextManager(path) as session: base_learner_origin = session.query(models.BaseLearnerOrigin).filter_by(id=id).first() if base_learner_origin is None: raise exceptions.UserError('Base learner origin {} not found'.format(id), 404) if not base_learner_origin.final: raise exceptions.UserError('Base learner origin {} is not final'.format(id)) req_body = request.get_json() # Retrieve full hyperparameters est = base_learner_origin.return_estimator() hyperparameters = functions.import_object_from_string_code(req_body['source'], 'params') est.set_params(**hyperparameters) hyperparameters = functions.make_serializable(est.get_params()) base_learners = session.query(models.BaseLearner).\ filter_by(base_learner_origin_id=id, hyperparameters=hyperparameters).all() if base_learners: raise exceptions.UserError('Base learner exists with given hyperparameters') base_learner = models.BaseLearner(hyperparameters, 'queued', base_learner_origin) if 'single_searches' not in base_learner_origin.description: base_learner_origin.description['single_searches'] = [] base_learner_origin.description['single_searches'] += ([req_body['source']]) session.add(base_learner) session.add(base_learner_origin) session.commit() with Connection(get_redis_connection()): rqtasks.generate_meta_features.delay(path, base_learner.id) return jsonify(base_learner.serialize)
def get_automated_runs(): """Return all automated runs""" path = functions.get_path_from_query_string(request) if request.method == 'GET': with functions.DBContextManager(path) as session: automated_runs = session.query(models.AutomatedRun).all() return jsonify(list(map(lambda x: x.serialize, automated_runs))) if request.method == 'POST': req_body = request.get_json() with functions.DBContextManager(path) as session: base_learner_origin = None if req_body['category'] == 'bayes' or req_body['category'] == 'greedy_ensemble_search': base_learner_origin = session.query(models.BaseLearnerOrigin).\ filter_by(id=req_body['base_learner_origin_id']).first() if base_learner_origin is None: raise exceptions.UserError('Base learner origin {} not found'.format( req_body['base_learner_origin_id'] ), 404) if not base_learner_origin.final: raise exceptions.UserError('Base learner origin {} is not final'.format( req_body['base_learner_origin_id'] )) elif req_body['category'] == 'tpot': pass else: raise exceptions.UserError('Automated run category' ' {} not recognized'.format(req_body['category'])) # Check for any syntax errors module = functions.import_string_code_as_module(req_body['source']) del module automated_run = models.AutomatedRun(req_body['source'], 'queued', req_body['category'], base_learner_origin) session.add(automated_run) session.commit() with Connection(get_redis_connection()): rqtasks.start_automated_run.delay(path, automated_run.id) return jsonify(automated_run.serialize)
def create_new_stacked_ensemble(): path = functions.get_path_from_query_string(request) req_body = request.get_json() with functions.DBContextManager(path) as session: if request.method == 'GET': return jsonify( list(map(lambda x: x.serialize, session.query(models.StackedEnsemble).all())) ) if request.method == 'POST': base_learners = session.query(models.BaseLearner).\ filter(models.BaseLearner.id.in_(req_body['base_learner_ids'])).all() if len(base_learners) != len(req_body['base_learner_ids']): raise exceptions.UserError('Not all base learners found') for learner in base_learners: if learner.job_status != 'finished': raise exceptions.UserError('Not all base learners have finished') base_learner_origin = session.query(models.BaseLearnerOrigin).\ filter_by(id=req_body['base_learner_origin_id']).first() if base_learner_origin is None: raise exceptions.UserError('Base learner origin {} not ' 'found'.format(req_body['base_learner_origin_id']), 404) # Retrieve full hyperparameters est = base_learner_origin.return_estimator() params = functions.import_object_from_string_code\ (req_body['secondary_learner_hyperparameters_source'], 'params') est.set_params(**params) hyperparameters = functions.make_serializable(est.get_params()) stacked_ensembles = session.query(models.StackedEnsemble).\ filter_by(base_learner_origin_id=req_body['base_learner_origin_id'], secondary_learner_hyperparameters=hyperparameters, base_learner_ids=sorted([bl.id for bl in base_learners])).all() if stacked_ensembles: raise exceptions.UserError('Stacked ensemble exists') stacked_ensemble = models.StackedEnsemble( secondary_learner_hyperparameters=hyperparameters, base_learners=base_learners, base_learner_origin=base_learner_origin, job_status='queued' ) session.add(stacked_ensemble) session.commit() with Connection(get_redis_connection()): rqtasks.evaluate_stacked_ensemble.delay(path, stacked_ensemble.id) return jsonify(stacked_ensemble.serialize)