Python rsa 模块,prime() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用rsa.prime()

项目:oscars2016    作者:0x0ece    | 项目源码 | 文件源码
def calculate_keys(p, q, nbits):
    '''Calculates an encryption and a decryption key given p and q, and
    returns them as a tuple (e, d)

    '''

    phi_n = (p - 1) * (q - 1)

    # A very common choice for e is 65537
    e = 65537

    try:
        d = rsa.common.inverse(e, phi_n)
    except ValueError:
        raise ValueError("e (%d) and phi_n (%d) are not relatively prime" %
                (e, phi_n))

    if (e * d) % phi_n != 1:
        raise ValueError("e (%d) and d (%d) are not mult. inv. modulo "
                "phi_n (%d)" % (e, d, phi_n))

    return (e, d)
项目:zeronet-debian    作者:bashrc    | 项目源码 | 文件源码
def calculate_keys(p, q, nbits):
    '''Calculates an encryption and a decryption key given p and q, and
    returns them as a tuple (e, d)

    '''

    phi_n = (p - 1) * (q - 1)

    # A very common choice for e is 65537
    e = 65537

    try:
        d = rsa.common.inverse(e, phi_n)
    except ValueError:
        raise ValueError("e (%d) and phi_n (%d) are not relatively prime" %
                (e, phi_n))

    if (e * d) % phi_n != 1:
        raise ValueError("e (%d) and d (%d) are not mult. inv. modulo "
                "phi_n (%d)" % (e, d, phi_n))

    return (e, d)
项目:OneClickDTU    作者:satwikkansal    | 项目源码 | 文件源码
def calculate_keys(p, q, nbits):
    '''Calculates an encryption and a decryption key given p and q, and
    returns them as a tuple (e, d)

    '''

    phi_n = (p - 1) * (q - 1)

    # A very common choice for e is 65537
    e = 65537

    try:
        d = rsa.common.inverse(e, phi_n)
    except ValueError:
        raise ValueError("e (%d) and phi_n (%d) are not relatively prime" %
                (e, phi_n))

    if (e * d) % phi_n != 1:
        raise ValueError("e (%d) and d (%d) are not mult. inv. modulo "
                "phi_n (%d)" % (e, d, phi_n))

    return (e, d)
项目:teleport    作者:eomsoft    | 项目源码 | 文件源码
def calculate_keys(p, q, nbits):
    '''Calculates an encryption and a decryption key given p and q, and
    returns them as a tuple (e, d)

    '''

    phi_n = (p - 1) * (q - 1)

    # A very common choice for e is 65537
    e = 65537

    try:
        d = rsa.common.inverse(e, phi_n)
    except ValueError:
        raise ValueError("e (%d) and phi_n (%d) are not relatively prime" %
                (e, phi_n))

    if (e * d) % phi_n != 1:
        raise ValueError("e (%d) and d (%d) are not mult. inv. modulo "
                "phi_n (%d)" % (e, d, phi_n))

    return (e, d)
项目:python-rsa    作者:sybrenstuvel    | 项目源码 | 文件源码
def test_is_prime(self):
        """Test some common primes."""

        # Test some trivial numbers
        self.assertFalse(rsa.prime.is_prime(-1))
        self.assertFalse(rsa.prime.is_prime(0))
        self.assertFalse(rsa.prime.is_prime(1))
        self.assertTrue(rsa.prime.is_prime(2))
        self.assertFalse(rsa.prime.is_prime(42))
        self.assertTrue(rsa.prime.is_prime(41))

        # Test some slightly larger numbers
        self.assertEqual(
            [907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997],
            [x for x in range(901, 1000) if rsa.prime.is_prime(x)]
        )

        # Test around the 50th millionth known prime.
        self.assertTrue(rsa.prime.is_prime(982451653))
        self.assertFalse(rsa.prime.is_prime(982451653 * 961748941))
项目:python-rsa    作者:sybrenstuvel    | 项目源码 | 文件源码
def test_mersenne_primes(self):
        """Tests first known Mersenne primes.

        Mersenne primes are prime numbers that can be written in the form
        `Mn = 2**n - 1` for some integer `n`. For the list of known Mersenne
        primes, see:
        https://en.wikipedia.org/wiki/Mersenne_prime#List_of_known_Mersenne_primes
        """

        # List of known Mersenne exponents.
        known_mersenne_exponents = [
            2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279,
            2203, 2281, 4423,
        ]

        # Test Mersenne primes.
        for exp in known_mersenne_exponents:
            self.assertTrue(rsa.prime.is_prime(2**exp - 1))
项目:secuimag3a    作者:matthiasbe    | 项目源码 | 文件源码
def calculate_keys(p, q, nbits):
    '''Calculates an encryption and a decryption key given p and q, and
    returns them as a tuple (e, d)

    '''

    phi_n = (p - 1) * (q - 1)

    # A very common choice for e is 65537
    e = 65537

    try:
        d = rsa.common.inverse(e, phi_n)
    except ValueError:
        raise ValueError("e (%d) and phi_n (%d) are not relatively prime" %
                (e, phi_n))

    if (e * d) % phi_n != 1:
        raise ValueError("e (%d) and d (%d) are not mult. inv. modulo "
                "phi_n (%d)" % (e, d, phi_n))

    return (e, d)
项目:secuimag3a    作者:matthiasbe    | 项目源码 | 文件源码
def test_is_prime(self):
        """Test some common primes."""

        # Test some trivial numbers
        self.assertFalse(rsa.prime.is_prime(-1))
        self.assertFalse(rsa.prime.is_prime(0))
        self.assertFalse(rsa.prime.is_prime(1))
        self.assertTrue(rsa.prime.is_prime(2))
        self.assertFalse(rsa.prime.is_prime(42))
        self.assertTrue(rsa.prime.is_prime(41))

        # Test some slightly larger numbers
        self.assertEqual(
            [907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997],
            [x for x in range(901, 1000) if rsa.prime.is_prime(x)]
        )

        # Test around the 50th millionth known prime.
        self.assertTrue(rsa.prime.is_prime(982451653))
        self.assertFalse(rsa.prime.is_prime(982451653 * 961748941))
项目:oscars2016    作者:0x0ece    | 项目源码 | 文件源码
def gen_keys(nbits, getprime_func, accurate=True):
    '''Generate RSA keys of nbits bits. Returns (p, q, e, d).

    Note: this can take a long time, depending on the key size.

    :param nbits: the total number of bits in ``p`` and ``q``. Both ``p`` and
        ``q`` will use ``nbits/2`` bits.
    :param getprime_func: either :py:func:`rsa.prime.getprime` or a function
        with similar signature.
    '''

    (p, q) = find_p_q(nbits // 2, getprime_func, accurate)
    (e, d) = calculate_keys(p, q, nbits // 2)

    return (p, q, e, d)
项目:oscars2016    作者:0x0ece    | 项目源码 | 文件源码
def _find_prime(nbits, pipe):
    while True:
        integer = rsa.randnum.read_random_int(nbits)

        # Make sure it's odd
        integer |= 1

        # Test for primeness
        if rsa.prime.is_prime(integer):
            pipe.send(integer)
            return
项目:oscars2016    作者:0x0ece    | 项目源码 | 文件源码
def getprime(nbits, poolsize):
    '''Returns a prime number that can be stored in 'nbits' bits.

    Works in multiple threads at the same time.

    >>> p = getprime(128, 3)
    >>> rsa.prime.is_prime(p-1)
    False
    >>> rsa.prime.is_prime(p)
    True
    >>> rsa.prime.is_prime(p+1)
    False

    >>> from rsa import common
    >>> common.bit_size(p) == 128
    True

    '''

    (pipe_recv, pipe_send) = mp.Pipe(duplex=False)

    # Create processes
    procs = [mp.Process(target=_find_prime, args=(nbits, pipe_send))
             for _ in range(poolsize)]
    [p.start() for p in procs]

    result = pipe_recv.recv()

    [p.terminate() for p in procs]

    return result
项目:GAMADV-XTD    作者:taers232c    | 项目源码 | 文件源码
def calculate_keys_custom_exponent(p, q, exponent):
    """Calculates an encryption and a decryption key given p, q and an exponent,
    and returns them as a tuple (e, d)

    :param p: the first large prime
    :param q: the second large prime
    :param exponent: the exponent for the key; only change this if you know
        what you're doing, as the exponent influences how difficult your
        private key can be cracked. A very common choice for e is 65537.
    :type exponent: int

    """

    phi_n = (p - 1) * (q - 1)

    try:
        d = rsa.common.inverse(exponent, phi_n)
    except ValueError:
        raise ValueError("e (%d) and phi_n (%d) are not relatively prime" %
                         (exponent, phi_n))

    if (exponent * d) % phi_n != 1:
        raise ValueError("e (%d) and d (%d) are not mult. inv. modulo "
                         "phi_n (%d)" % (exponent, d, phi_n))

    return exponent, d
项目:GAMADV-XTD    作者:taers232c    | 项目源码 | 文件源码
def calculate_keys(p, q):
    """Calculates an encryption and a decryption key given p and q, and
    returns them as a tuple (e, d)

    :param p: the first large prime
    :param q: the second large prime

    :return: tuple (e, d) with the encryption and decryption exponents.
    """

    return calculate_keys_custom_exponent(p, q, DEFAULT_EXPONENT)
项目:GAMADV-XTD    作者:taers232c    | 项目源码 | 文件源码
def gen_keys(nbits, getprime_func, accurate=True, exponent=DEFAULT_EXPONENT):
    """Generate RSA keys of nbits bits. Returns (p, q, e, d).

    Note: this can take a long time, depending on the key size.

    :param nbits: the total number of bits in ``p`` and ``q``. Both ``p`` and
        ``q`` will use ``nbits/2`` bits.
    :param getprime_func: either :py:func:`rsa.prime.getprime` or a function
        with similar signature.
    :param exponent: the exponent for the key; only change this if you know
        what you're doing, as the exponent influences how difficult your
        private key can be cracked. A very common choice for e is 65537.
    :type exponent: int
    """

    # Regenerate p and q values, until calculate_keys doesn't raise a
    # ValueError.
    while True:
        (p, q) = find_p_q(nbits // 2, getprime_func, accurate)
        try:
            (e, d) = calculate_keys_custom_exponent(p, q, exponent=exponent)
            break
        except ValueError:
            pass

    return p, q, e, d
项目:GAMADV-XTD    作者:taers232c    | 项目源码 | 文件源码
def _find_prime(nbits, pipe):
    while True:
        integer = rsa.randnum.read_random_odd_int(nbits)

        # Test for primeness
        if rsa.prime.is_prime(integer):
            pipe.send(integer)
            return
项目:zeronet-debian    作者:bashrc    | 项目源码 | 文件源码
def gen_keys(nbits, getprime_func, accurate=True):
    '''Generate RSA keys of nbits bits. Returns (p, q, e, d).

    Note: this can take a long time, depending on the key size.

    :param nbits: the total number of bits in ``p`` and ``q``. Both ``p`` and
        ``q`` will use ``nbits/2`` bits.
    :param getprime_func: either :py:func:`rsa.prime.getprime` or a function
        with similar signature.
    '''

    (p, q) = find_p_q(nbits // 2, getprime_func, accurate)
    (e, d) = calculate_keys(p, q, nbits // 2)

    return (p, q, e, d)
项目:zeronet-debian    作者:bashrc    | 项目源码 | 文件源码
def _find_prime(nbits, pipe):
    while True:
        integer = rsa.randnum.read_random_int(nbits)

        # Make sure it's odd
        integer |= 1

        # Test for primeness
        if rsa.prime.is_prime(integer):
            pipe.send(integer)
            return
项目:zeronet-debian    作者:bashrc    | 项目源码 | 文件源码
def getprime(nbits, poolsize):
    '''Returns a prime number that can be stored in 'nbits' bits.

    Works in multiple threads at the same time.

    >>> p = getprime(128, 3)
    >>> rsa.prime.is_prime(p-1)
    False
    >>> rsa.prime.is_prime(p)
    True
    >>> rsa.prime.is_prime(p+1)
    False

    >>> from rsa import common
    >>> common.bit_size(p) == 128
    True

    '''

    (pipe_recv, pipe_send) = mp.Pipe(duplex=False)

    # Create processes
    procs = [mp.Process(target=_find_prime, args=(nbits, pipe_send))
             for _ in range(poolsize)]
    [p.start() for p in procs]

    result = pipe_recv.recv()

    [p.terminate() for p in procs]

    return result
项目:plugin.video.bdyun    作者:caasiu    | 项目源码 | 文件源码
def calculate_keys_custom_exponent(p, q, exponent):
    """Calculates an encryption and a decryption key given p, q and an exponent,
    and returns them as a tuple (e, d)

    :param p: the first large prime
    :param q: the second large prime
    :param exponent: the exponent for the key; only change this if you know
        what you're doing, as the exponent influences how difficult your
        private key can be cracked. A very common choice for e is 65537.
    :type exponent: int

    """

    phi_n = (p - 1) * (q - 1)

    try:
        d = rsa.common.inverse(exponent, phi_n)
    except ValueError:
        raise ValueError("e (%d) and phi_n (%d) are not relatively prime" %
                         (exponent, phi_n))

    if (exponent * d) % phi_n != 1:
        raise ValueError("e (%d) and d (%d) are not mult. inv. modulo "
                         "phi_n (%d)" % (exponent, d, phi_n))

    return exponent, d
项目:plugin.video.bdyun    作者:caasiu    | 项目源码 | 文件源码
def calculate_keys(p, q):
    """Calculates an encryption and a decryption key given p and q, and
    returns them as a tuple (e, d)

    :param p: the first large prime
    :param q: the second large prime

    :return: tuple (e, d) with the encryption and decryption exponents.
    """

    return calculate_keys_custom_exponent(p, q, DEFAULT_EXPONENT)
项目:plugin.video.bdyun    作者:caasiu    | 项目源码 | 文件源码
def gen_keys(nbits, getprime_func, accurate=True, exponent=DEFAULT_EXPONENT):
    """Generate RSA keys of nbits bits. Returns (p, q, e, d).

    Note: this can take a long time, depending on the key size.

    :param nbits: the total number of bits in ``p`` and ``q``. Both ``p`` and
        ``q`` will use ``nbits/2`` bits.
    :param getprime_func: either :py:func:`rsa.prime.getprime` or a function
        with similar signature.
    :param exponent: the exponent for the key; only change this if you know
        what you're doing, as the exponent influences how difficult your
        private key can be cracked. A very common choice for e is 65537.
    :type exponent: int
    """

    # Regenerate p and q values, until calculate_keys doesn't raise a
    # ValueError.
    while True:
        (p, q) = find_p_q(nbits // 2, getprime_func, accurate)
        try:
            (e, d) = calculate_keys_custom_exponent(p, q, exponent=exponent)
            break
        except ValueError:
            pass

    return p, q, e, d
项目:plugin.video.bdyun    作者:caasiu    | 项目源码 | 文件源码
def _find_prime(nbits, pipe):
    while True:
        integer = rsa.randnum.read_random_odd_int(nbits)

        # Test for primeness
        if rsa.prime.is_prime(integer):
            pipe.send(integer)
            return
项目:WeiboPictureWorkflow    作者:cielpy    | 项目源码 | 文件源码
def calculate_keys_custom_exponent(p, q, exponent):
    """Calculates an encryption and a decryption key given p, q and an exponent,
    and returns them as a tuple (e, d)

    :param p: the first large prime
    :param q: the second large prime
    :param exponent: the exponent for the key; only change this if you know
        what you're doing, as the exponent influences how difficult your
        private key can be cracked. A very common choice for e is 65537.
    :type exponent: int

    """

    phi_n = (p - 1) * (q - 1)

    try:
        d = rsa.common.inverse(exponent, phi_n)
    except ValueError:
        raise ValueError("e (%d) and phi_n (%d) are not relatively prime" %
                         (exponent, phi_n))

    if (exponent * d) % phi_n != 1:
        raise ValueError("e (%d) and d (%d) are not mult. inv. modulo "
                         "phi_n (%d)" % (exponent, d, phi_n))

    return exponent, d
项目:WeiboPictureWorkflow    作者:cielpy    | 项目源码 | 文件源码
def calculate_keys(p, q):
    """Calculates an encryption and a decryption key given p and q, and
    returns them as a tuple (e, d)

    :param p: the first large prime
    :param q: the second large prime

    :return: tuple (e, d) with the encryption and decryption exponents.
    """

    return calculate_keys_custom_exponent(p, q, DEFAULT_EXPONENT)
项目:WeiboPictureWorkflow    作者:cielpy    | 项目源码 | 文件源码
def gen_keys(nbits, getprime_func, accurate=True, exponent=DEFAULT_EXPONENT):
    """Generate RSA keys of nbits bits. Returns (p, q, e, d).

    Note: this can take a long time, depending on the key size.

    :param nbits: the total number of bits in ``p`` and ``q``. Both ``p`` and
        ``q`` will use ``nbits/2`` bits.
    :param getprime_func: either :py:func:`rsa.prime.getprime` or a function
        with similar signature.
    :param exponent: the exponent for the key; only change this if you know
        what you're doing, as the exponent influences how difficult your
        private key can be cracked. A very common choice for e is 65537.
    :type exponent: int
    """

    # Regenerate p and q values, until calculate_keys doesn't raise a
    # ValueError.
    while True:
        (p, q) = find_p_q(nbits // 2, getprime_func, accurate)
        try:
            (e, d) = calculate_keys_custom_exponent(p, q, exponent=exponent)
            break
        except ValueError:
            pass

    return p, q, e, d
项目:WeiboPictureWorkflow    作者:cielpy    | 项目源码 | 文件源码
def _find_prime(nbits, pipe):
    while True:
        integer = rsa.randnum.read_random_odd_int(nbits)

        # Test for primeness
        if rsa.prime.is_prime(integer):
            pipe.send(integer)
            return
项目:AshsSDK    作者:thehappydinoa    | 项目源码 | 文件源码
def calculate_keys_custom_exponent(p, q, exponent):
    """Calculates an encryption and a decryption key given p, q and an exponent,
    and returns them as a tuple (e, d)

    :param p: the first large prime
    :param q: the second large prime
    :param exponent: the exponent for the key; only change this if you know
        what you're doing, as the exponent influences how difficult your
        private key can be cracked. A very common choice for e is 65537.
    :type exponent: int

    """

    phi_n = (p - 1) * (q - 1)

    try:
        d = rsa.common.inverse(exponent, phi_n)
    except ValueError:
        raise ValueError("e (%d) and phi_n (%d) are not relatively prime" %
                         (exponent, phi_n))

    if (exponent * d) % phi_n != 1:
        raise ValueError("e (%d) and d (%d) are not mult. inv. modulo "
                         "phi_n (%d)" % (exponent, d, phi_n))

    return exponent, d
项目:AshsSDK    作者:thehappydinoa    | 项目源码 | 文件源码
def calculate_keys(p, q):
    """Calculates an encryption and a decryption key given p and q, and
    returns them as a tuple (e, d)

    :param p: the first large prime
    :param q: the second large prime

    :return: tuple (e, d) with the encryption and decryption exponents.
    """

    return calculate_keys_custom_exponent(p, q, DEFAULT_EXPONENT)
项目:AshsSDK    作者:thehappydinoa    | 项目源码 | 文件源码
def gen_keys(nbits, getprime_func, accurate=True, exponent=DEFAULT_EXPONENT):
    """Generate RSA keys of nbits bits. Returns (p, q, e, d).

    Note: this can take a long time, depending on the key size.

    :param nbits: the total number of bits in ``p`` and ``q``. Both ``p`` and
        ``q`` will use ``nbits/2`` bits.
    :param getprime_func: either :py:func:`rsa.prime.getprime` or a function
        with similar signature.
    :param exponent: the exponent for the key; only change this if you know
        what you're doing, as the exponent influences how difficult your
        private key can be cracked. A very common choice for e is 65537.
    :type exponent: int
    """

    # Regenerate p and q values, until calculate_keys doesn't raise a
    # ValueError.
    while True:
        (p, q) = find_p_q(nbits // 2, getprime_func, accurate)
        try:
            (e, d) = calculate_keys_custom_exponent(p, q, exponent=exponent)
            break
        except ValueError:
            pass

    return p, q, e, d
项目:AshsSDK    作者:thehappydinoa    | 项目源码 | 文件源码
def _find_prime(nbits, pipe):
    while True:
        integer = rsa.randnum.read_random_odd_int(nbits)

        # Test for primeness
        if rsa.prime.is_prime(integer):
            pipe.send(integer)
            return
项目:REMAP    作者:REMAPApp    | 项目源码 | 文件源码
def calculate_keys_custom_exponent(p, q, exponent):
    """Calculates an encryption and a decryption key given p, q and an exponent,
    and returns them as a tuple (e, d)

    :param p: the first large prime
    :param q: the second large prime
    :param exponent: the exponent for the key; only change this if you know
        what you're doing, as the exponent influences how difficult your
        private key can be cracked. A very common choice for e is 65537.
    :type exponent: int

    """

    phi_n = (p - 1) * (q - 1)

    try:
        d = rsa.common.inverse(exponent, phi_n)
    except ValueError:
        raise ValueError("e (%d) and phi_n (%d) are not relatively prime" %
                         (exponent, phi_n))

    if (exponent * d) % phi_n != 1:
        raise ValueError("e (%d) and d (%d) are not mult. inv. modulo "
                         "phi_n (%d)" % (exponent, d, phi_n))

    return exponent, d
项目:REMAP    作者:REMAPApp    | 项目源码 | 文件源码
def calculate_keys(p, q):
    """Calculates an encryption and a decryption key given p and q, and
    returns them as a tuple (e, d)

    :param p: the first large prime
    :param q: the second large prime

    :return: tuple (e, d) with the encryption and decryption exponents.
    """

    return calculate_keys_custom_exponent(p, q, DEFAULT_EXPONENT)
项目:REMAP    作者:REMAPApp    | 项目源码 | 文件源码
def gen_keys(nbits, getprime_func, accurate=True, exponent=DEFAULT_EXPONENT):
    """Generate RSA keys of nbits bits. Returns (p, q, e, d).

    Note: this can take a long time, depending on the key size.

    :param nbits: the total number of bits in ``p`` and ``q``. Both ``p`` and
        ``q`` will use ``nbits/2`` bits.
    :param getprime_func: either :py:func:`rsa.prime.getprime` or a function
        with similar signature.
    :param exponent: the exponent for the key; only change this if you know
        what you're doing, as the exponent influences how difficult your
        private key can be cracked. A very common choice for e is 65537.
    :type exponent: int
    """

    # Regenerate p and q values, until calculate_keys doesn't raise a
    # ValueError.
    while True:
        (p, q) = find_p_q(nbits // 2, getprime_func, accurate)
        try:
            (e, d) = calculate_keys_custom_exponent(p, q, exponent=exponent)
            break
        except ValueError:
            pass

    return p, q, e, d
项目:REMAP    作者:REMAPApp    | 项目源码 | 文件源码
def _find_prime(nbits, pipe):
    while True:
        integer = rsa.randnum.read_random_odd_int(nbits)

        # Test for primeness
        if rsa.prime.is_prime(integer):
            pipe.send(integer)
            return
项目:OneClickDTU    作者:satwikkansal    | 项目源码 | 文件源码
def gen_keys(nbits, getprime_func, accurate=True):
    '''Generate RSA keys of nbits bits. Returns (p, q, e, d).

    Note: this can take a long time, depending on the key size.

    :param nbits: the total number of bits in ``p`` and ``q``. Both ``p`` and
        ``q`` will use ``nbits/2`` bits.
    :param getprime_func: either :py:func:`rsa.prime.getprime` or a function
        with similar signature.
    '''

    (p, q) = find_p_q(nbits // 2, getprime_func, accurate)
    (e, d) = calculate_keys(p, q, nbits // 2)

    return (p, q, e, d)
项目:OneClickDTU    作者:satwikkansal    | 项目源码 | 文件源码
def _find_prime(nbits, pipe):
    while True:
        integer = rsa.randnum.read_random_int(nbits)

        # Make sure it's odd
        integer |= 1

        # Test for primeness
        if rsa.prime.is_prime(integer):
            pipe.send(integer)
            return
项目:OneClickDTU    作者:satwikkansal    | 项目源码 | 文件源码
def getprime(nbits, poolsize):
    '''Returns a prime number that can be stored in 'nbits' bits.

    Works in multiple threads at the same time.

    >>> p = getprime(128, 3)
    >>> rsa.prime.is_prime(p-1)
    False
    >>> rsa.prime.is_prime(p)
    True
    >>> rsa.prime.is_prime(p+1)
    False

    >>> from rsa import common
    >>> common.bit_size(p) == 128
    True

    '''

    (pipe_recv, pipe_send) = mp.Pipe(duplex=False)

    # Create processes
    procs = [mp.Process(target=_find_prime, args=(nbits, pipe_send))
             for _ in range(poolsize)]
    [p.start() for p in procs]

    result = pipe_recv.recv()

    [p.terminate() for p in procs]

    return result
项目:metrics    作者:Jeremy-Friedman    | 项目源码 | 文件源码
def calculate_keys_custom_exponent(p, q, exponent):
    """Calculates an encryption and a decryption key given p, q and an exponent,
    and returns them as a tuple (e, d)

    :param p: the first large prime
    :param q: the second large prime
    :param exponent: the exponent for the key; only change this if you know
        what you're doing, as the exponent influences how difficult your
        private key can be cracked. A very common choice for e is 65537.
    :type exponent: int

    """

    phi_n = (p - 1) * (q - 1)

    try:
        d = rsa.common.inverse(exponent, phi_n)
    except ValueError:
        raise ValueError("e (%d) and phi_n (%d) are not relatively prime" %
                         (exponent, phi_n))

    if (exponent * d) % phi_n != 1:
        raise ValueError("e (%d) and d (%d) are not mult. inv. modulo "
                         "phi_n (%d)" % (exponent, d, phi_n))

    return exponent, d
项目:metrics    作者:Jeremy-Friedman    | 项目源码 | 文件源码
def calculate_keys(p, q):
    """Calculates an encryption and a decryption key given p and q, and
    returns them as a tuple (e, d)

    :param p: the first large prime
    :param q: the second large prime

    :return: tuple (e, d) with the encryption and decryption exponents.
    """

    return calculate_keys_custom_exponent(p, q, DEFAULT_EXPONENT)
项目:metrics    作者:Jeremy-Friedman    | 项目源码 | 文件源码
def gen_keys(nbits, getprime_func, accurate=True, exponent=DEFAULT_EXPONENT):
    """Generate RSA keys of nbits bits. Returns (p, q, e, d).

    Note: this can take a long time, depending on the key size.

    :param nbits: the total number of bits in ``p`` and ``q``. Both ``p`` and
        ``q`` will use ``nbits/2`` bits.
    :param getprime_func: either :py:func:`rsa.prime.getprime` or a function
        with similar signature.
    :param exponent: the exponent for the key; only change this if you know
        what you're doing, as the exponent influences how difficult your
        private key can be cracked. A very common choice for e is 65537.
    :type exponent: int
    """

    # Regenerate p and q values, until calculate_keys doesn't raise a
    # ValueError.
    while True:
        (p, q) = find_p_q(nbits // 2, getprime_func, accurate)
        try:
            (e, d) = calculate_keys_custom_exponent(p, q, exponent=exponent)
            break
        except ValueError:
            pass

    return p, q, e, d
项目:metrics    作者:Jeremy-Friedman    | 项目源码 | 文件源码
def _find_prime(nbits, pipe):
    while True:
        integer = rsa.randnum.read_random_odd_int(nbits)

        # Test for primeness
        if rsa.prime.is_prime(integer):
            pipe.send(integer)
            return
项目:metrics    作者:Jeremy-Friedman    | 项目源码 | 文件源码
def calculate_keys_custom_exponent(p, q, exponent):
    """Calculates an encryption and a decryption key given p, q and an exponent,
    and returns them as a tuple (e, d)

    :param p: the first large prime
    :param q: the second large prime
    :param exponent: the exponent for the key; only change this if you know
        what you're doing, as the exponent influences how difficult your
        private key can be cracked. A very common choice for e is 65537.
    :type exponent: int

    """

    phi_n = (p - 1) * (q - 1)

    try:
        d = rsa.common.inverse(exponent, phi_n)
    except ValueError:
        raise ValueError("e (%d) and phi_n (%d) are not relatively prime" %
                         (exponent, phi_n))

    if (exponent * d) % phi_n != 1:
        raise ValueError("e (%d) and d (%d) are not mult. inv. modulo "
                         "phi_n (%d)" % (exponent, d, phi_n))

    return exponent, d
项目:metrics    作者:Jeremy-Friedman    | 项目源码 | 文件源码
def calculate_keys(p, q):
    """Calculates an encryption and a decryption key given p and q, and
    returns them as a tuple (e, d)

    :param p: the first large prime
    :param q: the second large prime

    :return: tuple (e, d) with the encryption and decryption exponents.
    """

    return calculate_keys_custom_exponent(p, q, DEFAULT_EXPONENT)
项目:metrics    作者:Jeremy-Friedman    | 项目源码 | 文件源码
def gen_keys(nbits, getprime_func, accurate=True, exponent=DEFAULT_EXPONENT):
    """Generate RSA keys of nbits bits. Returns (p, q, e, d).

    Note: this can take a long time, depending on the key size.

    :param nbits: the total number of bits in ``p`` and ``q``. Both ``p`` and
        ``q`` will use ``nbits/2`` bits.
    :param getprime_func: either :py:func:`rsa.prime.getprime` or a function
        with similar signature.
    :param exponent: the exponent for the key; only change this if you know
        what you're doing, as the exponent influences how difficult your
        private key can be cracked. A very common choice for e is 65537.
    :type exponent: int
    """

    # Regenerate p and q values, until calculate_keys doesn't raise a
    # ValueError.
    while True:
        (p, q) = find_p_q(nbits // 2, getprime_func, accurate)
        try:
            (e, d) = calculate_keys_custom_exponent(p, q, exponent=exponent)
            break
        except ValueError:
            pass

    return p, q, e, d
项目:metrics    作者:Jeremy-Friedman    | 项目源码 | 文件源码
def _find_prime(nbits, pipe):
    while True:
        integer = rsa.randnum.read_random_odd_int(nbits)

        # Test for primeness
        if rsa.prime.is_prime(integer):
            pipe.send(integer)
            return
项目:alfredToday    作者:jeeftor    | 项目源码 | 文件源码
def calculate_keys_custom_exponent(p, q, exponent):
    """Calculates an encryption and a decryption key given p, q and an exponent,
    and returns them as a tuple (e, d)

    :param p: the first large prime
    :param q: the second large prime
    :param exponent: the exponent for the key; only change this if you know
        what you're doing, as the exponent influences how difficult your
        private key can be cracked. A very common choice for e is 65537.
    :type exponent: int

    """

    phi_n = (p - 1) * (q - 1)

    try:
        d = rsa.common.inverse(exponent, phi_n)
    except ValueError:
        raise ValueError("e (%d) and phi_n (%d) are not relatively prime" %
                         (exponent, phi_n))

    if (exponent * d) % phi_n != 1:
        raise ValueError("e (%d) and d (%d) are not mult. inv. modulo "
                         "phi_n (%d)" % (exponent, d, phi_n))

    return exponent, d
项目:alfredToday    作者:jeeftor    | 项目源码 | 文件源码
def calculate_keys(p, q):
    """Calculates an encryption and a decryption key given p and q, and
    returns them as a tuple (e, d)

    :param p: the first large prime
    :param q: the second large prime

    :return: tuple (e, d) with the encryption and decryption exponents.
    """

    return calculate_keys_custom_exponent(p, q, DEFAULT_EXPONENT)
项目:alfredToday    作者:jeeftor    | 项目源码 | 文件源码
def gen_keys(nbits, getprime_func, accurate=True, exponent=DEFAULT_EXPONENT):
    """Generate RSA keys of nbits bits. Returns (p, q, e, d).

    Note: this can take a long time, depending on the key size.

    :param nbits: the total number of bits in ``p`` and ``q``. Both ``p`` and
        ``q`` will use ``nbits/2`` bits.
    :param getprime_func: either :py:func:`rsa.prime.getprime` or a function
        with similar signature.
    :param exponent: the exponent for the key; only change this if you know
        what you're doing, as the exponent influences how difficult your
        private key can be cracked. A very common choice for e is 65537.
    :type exponent: int
    """

    # Regenerate p and q values, until calculate_keys doesn't raise a
    # ValueError.
    while True:
        (p, q) = find_p_q(nbits // 2, getprime_func, accurate)
        try:
            (e, d) = calculate_keys_custom_exponent(p, q, exponent=exponent)
            break
        except ValueError:
            pass

    return p, q, e, d
项目:alfredToday    作者:jeeftor    | 项目源码 | 文件源码
def _find_prime(nbits, pipe):
    while True:
        integer = rsa.randnum.read_random_odd_int(nbits)

        # Test for primeness
        if rsa.prime.is_prime(integer):
            pipe.send(integer)
            return
项目:gmail_scanner    作者:brandonhub    | 项目源码 | 文件源码
def calculate_keys_custom_exponent(p, q, exponent):
    """Calculates an encryption and a decryption key given p, q and an exponent,
    and returns them as a tuple (e, d)

    :param p: the first large prime
    :param q: the second large prime
    :param exponent: the exponent for the key; only change this if you know
        what you're doing, as the exponent influences how difficult your
        private key can be cracked. A very common choice for e is 65537.
    :type exponent: int

    """

    phi_n = (p - 1) * (q - 1)

    try:
        d = rsa.common.inverse(exponent, phi_n)
    except ValueError:
        raise ValueError("e (%d) and phi_n (%d) are not relatively prime" %
                         (exponent, phi_n))

    if (exponent * d) % phi_n != 1:
        raise ValueError("e (%d) and d (%d) are not mult. inv. modulo "
                         "phi_n (%d)" % (exponent, d, phi_n))

    return exponent, d