Python scipy.ndimage 模块,gaussian_filter1d() 实例源码

我们从Python开源项目中,提取了以下7个代码示例,用于说明如何使用scipy.ndimage.gaussian_filter1d()

项目:cross_validation_failure    作者:GaelVaroquaux    | 项目源码 | 文件源码
def mk_data(n_samples=200, random_state=0, separability=1,
            noise_corr=2, dim=100):
    rng = np.random.RandomState(random_state)
    y = rng.random_integers(0, 1, size=n_samples)
    noise = rng.normal(size=(n_samples, dim))
    if not noise_corr is None and noise_corr > 0:
        noise = ndimage.gaussian_filter1d(noise, noise_corr, axis=0)
    noise = noise / noise.std(axis=0)
    # We need to decrease univariate separability as dimension increases
    centers = 4. / dim * np.ones((2, dim))
    centers[0] *= -1
    X = separability * centers[y] + noise
    return X, y


###############################################################################
# Code to run the cross-validations
项目:cross_validation_failure    作者:GaelVaroquaux    | 项目源码 | 文件源码
def mk_data(n_samples=200, random_state=0, separability=1,
            noise_corr=2, dim=100):
    rng = np.random.RandomState(random_state)
    y = rng.random_integers(0, 1, size=n_samples)
    noise = rng.normal(size=(n_samples, dim))
    if not noise_corr is None and noise_corr > 0:
        noise = ndimage.gaussian_filter1d(noise, noise_corr, axis=0)
    noise = noise / noise.std(axis=0)
    # We need to decrease univariate separability as dimension increases
    centers = 4. / dim * np.ones((2, dim))
    centers[0] *= -1
    X = separability * centers[y] + noise
    return X, y


###############################################################################
# The perfect predictor
项目:cross_validation_failure    作者:GaelVaroquaux    | 项目源码 | 文件源码
def mk_data(n_samples=200, random_state=0, separability=1,
            noise_corr=2, dim=100):
    rng = np.random.RandomState(random_state)
    y = rng.random_integers(0, 1, size=n_samples)
    noise = rng.normal(size=(n_samples, dim))
    if not noise_corr is None and noise_corr > 0:
        noise = ndimage.gaussian_filter1d(noise, noise_corr, axis=0)
    noise = noise / noise.std(axis=0)
    # We need to decrease univariate separability as dimension increases
    centers = 4. / dim * np.ones((2, dim))
    centers[0] *= -1
    X = separability * centers[y] + noise
    return X, y


###############################################################################
# Code to run the cross-validations
项目:smhr    作者:andycasey    | 项目源码 | 文件源码
def gaussian_smooth(self, fwhm, **kwargs):

        profile_sigma = fwhm / (2 * (2*np.log(2))**0.5)

        # The requested FWHM is in Angstroms, but the dispersion between each
        # pixel is likely less than an Angstrom, so we must calculate the true
        # smoothing value

        true_profile_sigma = profile_sigma / np.median(np.diff(self.dispersion))
        smoothed_flux = ndimage.gaussian_filter1d(self.flux, true_profile_sigma, **kwargs)

        # TODO modify ivar based on smoothing?
        return self.__class__(self.dispersion, smoothed_flux, self.ivar.copy(), metadata=self.metadata.copy())
项目:decoding_challenge_cortana_2016_3rd    作者:kingjr    | 项目源码 | 文件源码
def _erfimage_imshow(ax, ch_idx, tmin, tmax, vmin, vmax, ylim=None, data=None,
                     epochs=None, sigma=None, order=None, scalings=None,
                     vline=None, x_label=None, y_label=None, colorbar=False,
                     cmap='RdBu_r'):
    """Aux function to plot erfimage on sensor topography"""
    from scipy import ndimage
    import matplotlib.pyplot as plt
    this_data = data[:, ch_idx, :].copy()

    if callable(order):
        order = order(epochs.times, this_data)

    if order is not None:
        this_data = this_data[order]

    if sigma > 0.:
        this_data = ndimage.gaussian_filter1d(this_data, sigma=sigma, axis=0)

    ax.imshow(this_data, extent=[tmin, tmax, 0, len(data)], aspect='auto',
              origin='lower', vmin=vmin, vmax=vmax, picker=True, cmap=cmap,
              interpolation='nearest')

    ax = plt.gca()
    if x_label is not None:
        ax.set_xlabel(x_label)
    if y_label is not None:
        ax.set_ylabel(y_label)
    if colorbar:
        plt.colorbar()
项目:decoding_challenge_cortana_2016_3rd    作者:kingjr    | 项目源码 | 文件源码
def _erfimage_imshow_unified(bn, ch_idx, tmin, tmax, vmin, vmax, ylim=None,
                             data=None, epochs=None, sigma=None, order=None,
                             scalings=None, vline=None, x_label=None,
                             y_label=None, colorbar=False, cmap='RdBu_r'):
    """Aux function to plot erfimage topography using a single axis"""
    from scipy import ndimage
    _compute_scalings(bn, (tmin, tmax), (0, len(epochs.events)))
    ax = bn.ax
    data_lines = bn.data_lines
    extent = (bn.x_t + bn.x_s * tmin, bn.x_t + bn.x_s * tmax, bn.y_t,
              bn.y_t + bn.y_s * len(epochs.events))
    this_data = data[:, ch_idx, :].copy()

    if callable(order):
        order = order(epochs.times, this_data)

    if order is not None:
        this_data = this_data[order]

    if sigma > 0.:
        this_data = ndimage.gaussian_filter1d(this_data, sigma=sigma, axis=0)

    data_lines.append(ax.imshow(this_data, extent=extent, aspect='auto',
                                origin='lower', vmin=vmin, vmax=vmax,
                                picker=True, cmap=cmap,
                                interpolation='nearest'))
项目:orange-infrared    作者:markotoplak    | 项目源码 | 文件源码
def __call__(self, data):
        if data.domain != self.domain:
            data = data.from_table(self.domain, data)
        xs, xsind, mon, X = _transform_to_sorted_features(data)
        X, nans = _nan_extend_edges_and_interpolate(xs[xsind], X)
        X = gaussian_filter1d(X, sigma=self.sd, mode="nearest")
        if nans is not None:
            X[nans] = np.nan
        return _transform_back_to_features(xsind, mon, X)