我们从Python开源项目中,提取了以下6个代码示例,用于说明如何使用seaborn.lmplot()。
def testData(): num_puntos =2000 conjunto_puntos =[] for i in range(num_puntos): if np.random.random()>0.5: x,y =np.random.normal(0.0,0.9),np.random.normal(0.0,0.9) conjunto_puntos.append([x,y]) else: x, y = np.random.normal(3.0, 0.5), np.random.normal(1.0, 0.5) conjunto_puntos.append([x, y]) df =pd.DataFrame({'x':[v[0] for v in conjunto_puntos],'y': [v[1] for v in conjunto_puntos]}) sns.lmplot('x','y',data=df,fit_reg=False,size=6) plt.show() ############??????###############
def visualize_data(self): """ Transform the DataFrame to the 2-dimensional case and visualizes the data. The first tags are used as labels. :return: """ logging.debug("Preparing visualization of DataFrame") # Reduce dimensionality to 2 features for visualization purposes X_visualization = self.reduce_dimensionality(self, self.X, n_features=2) df = self.prepare_dataframe(X_visualization) # Set X and Y coordinate for each articles df['X coordinate'] = df['coordinates'].apply(lambda x: x[0])# shwenag ...No clue whats happening?? df['Y coordinate'] = df['coordinates'].apply(lambda x: x[1])# shwenag ...No clue whats happening?? ''' # Create a list of markers, each tag has its own marker n_tags_first = len(self.df['tags_first'].unique()) markers_choice_list = ['o', 's', '^', '.', 'v', '<', '>', 'D'] markers_list = [markers_choice_list[i % 8] for i in range(n_tags_first)] ''' # Create scatter plot sns.lmplot("X coordinate", "Y coordinate", #hue="tags_first",#commented by shwenag data=df, fit_reg=False, #markers=markers_list,#commented by shwenag scatter_kws={"s": 150}) # Adjust borders and add title sns.set(font_scale=2) sns.plt.title('Visualization of articles in a 2-dimensional space') sns.plt.subplots_adjust(right=0.80, top=0.90, left=0.12, bottom=0.12) # Show plot sns.plt.show()
def plotScatterLabelled(data, x_param, y_param, huey, output_path, output_directory, output_filename): sns.lmplot(x_param, y_param, data, hue=huey, fit_reg=False); output_ = "%s/%s/%s" % (output_path, output_directory, output_filename) try: plt.savefig(output_) except IOError: os.makedirs('%s/%s/' % (output_path, output_directory)) plt.savefig(output_) plt.close()
def plot_clustering(clustering, data, title): plot_df = pd.DataFrame(data, columns=['0', '1']) plot_df['cluster'] = clustering g = sb.lmplot(x='0', y='1', data=plot_df, hue='cluster', fit_reg=False) g.ax.set_title(title) pp.draw()
def visualize_data(self): """ Transform the DataFrame to the 2-dimensional case and visualizes the data. The first tags are used as labels. :return: """ logging.debug("Preparing visualization of DataFrame") # Reduce dimensionality to 2 features for visualization purposes X_visualization = self.reduce_dimensionality(self.X, n_features=2) df = self.prepare_dataframe(X_visualization) # Set X and Y coordinate for each articles df['X coordinate'] = df['coordinates'].apply(lambda x: x[0]) df['Y coordinate'] = df['coordinates'].apply(lambda x: x[1]) # Create a list of markers, each tag has its own marker n_tags_first = len(self.df['tags_first'].unique()) markers_choice_list = ['o', 's', '^', '.', 'v', '<', '>', 'D'] markers_list = [markers_choice_list[i % 8] for i in range(n_tags_first)] # Create scatter plot sns.lmplot("X coordinate", "Y coordinate", hue="tags_first", data=df, fit_reg=False, markers=markers_list, scatter_kws={"s": 150}) # Adjust borders and add title sns.set(font_scale=2) sns.plt.title('Visualization of TMT articles in a 2-dimensional space') sns.plt.subplots_adjust(right=0.80, top=0.90, left=0.12, bottom=0.12) # Show plot sns.plt.show() # Train recommender