Python seaborn 模块,tsplot() 实例源码

我们从Python开源项目中,提取了以下19个代码示例,用于说明如何使用seaborn.tsplot()

项目:AlphaPy    作者:ScottFreeLLC    | 项目源码 | 文件源码
def plot_time_series(df, target, tag='eda', directory=None):
    r"""Plot time series data.

    Parameters
    ----------
    df : pandas.DataFrame
        The dataframe containing the ``target`` feature.
    target : str
        The target variable for the time series plot.
    tag : str
        Unique identifier for the plot.
    directory : str, optional
        The full specification of the plot location.

    Returns
    -------
    None : None.

    References
    ----------

    http://seaborn.pydata.org/generated/seaborn.tsplot.html

    """

    logger.info("Generating Time Series Plot")

    # Generate the time series plot

    ts_plot = sns.tsplot(data=df[target])
    ts_fig = ts_plot.get_figure()

    # Save the plot
    write_plot('seaborn', ts_fig, 'time_series_plot', tag, directory)


#
# Function plot_candlestick
#
项目:tensorforce-benchmark    作者:reinforceio    | 项目源码 | 文件源码
def plot_reward_by_episode(self, ax=None):
        self.make_palette()

        full_data = pd.DataFrame()
        for idx, (benchmark_data, name) in enumerate(self.benchmarks):
            plot_data = to_timeseries(benchmark_data, x_label="Episode", y_label="Average Episode Reward",
                                    target=rewards_by_episode, cut_x=benchmark_data.min_x('episodes'), smooth=10)
            plot_data['Benchmark'] = name
            full_data = full_data.append(plot_data)

        plot = sns.tsplot(data=full_data, time="Episode", value="Average Episode Reward", unit="experiment",
                          condition='Benchmark', ax=ax, ci=[68, 95], color=self.palette)

        return plot
项目:tensorforce-benchmark    作者:reinforceio    | 项目源码 | 文件源码
def plot_reward_by_timestep(self, ax=None):
        self.make_palette()

        full_data = pd.DataFrame()
        for idx, (benchmark_data, name) in enumerate(self.benchmarks):
            plot_data = to_timeseries(benchmark_data, x_label="Time step", y_label="Average Episode Reward",
                                    target=rewards_by_timestep, cut_x=benchmark_data.min_x('timesteps'), smooth=10)
            plot_data['Benchmark'] = name
            full_data = full_data.append(plot_data)

        plot = sns.tsplot(data=full_data, time="Time step", value="Average Episode Reward", unit="experiment",
                          condition='Benchmark', ax=ax, ci=[68, 95], color=self.palette)

        return plot
项目:tensorforce-benchmark    作者:reinforceio    | 项目源码 | 文件源码
def plot_reward_by_second(self, ax=None):
        self.make_palette()

        full_data = pd.DataFrame()
        for idx, (benchmark_data, name) in enumerate(self.benchmarks):
            plot_data = to_timeseries(benchmark_data, x_label="Second", y_label="Average Episode Reward",
                                    target=rewards_by_second, cut_x=benchmark_data.min_x('seconds'), smooth=10)
            plot_data['Benchmark'] = name
            full_data = full_data.append(plot_data)

        plot = sns.tsplot(data=full_data, time="Second", value="Average Episode Reward", unit="experiment",
                          condition='Benchmark', ax=ax, ci=[68, 95], color=self.palette)

        return plot
项目:pymoku    作者:liquidinstruments    | 项目源码 | 文件源码
def phase1_plot_update(f, ax1, ax2, data, passed, results, fails, failure_criteria, progress):
        ax1.cla()
        ax2.cla()
        sns.tsplot(data.ch1, time=data.time, color="g" if passed else "r", ax=ax1, interpolate=True)
        if len(results) > 1:
            try:
                sns.distplot(results, norm_hist=False, rug=True, ax=ax2)
            except Exception:
                pass
        ax1.set(title='Transition Waveform', xlabel='Time (sec)', ylabel='Amplitude (V)')
        ax2.set(title="Risetime Histogram", ylabel="Density", xlabel="Risetime (sec)")
        ax2.annotate('Outside Spec: %d / %d\nCompleted %d%%' % (len(fails), len(results), progress), xy=(0.75,0.90), xycoords='axes fraction', fontsize=14)
        xlims = ax2.get_xlim()
        ax2.axvspan(failure_criteria,xlims[1] - 0.001*(xlims[1] - xlims[0]), alpha=0.1, color='red')
        plt.pause(0.01)
项目:pymoku    作者:liquidinstruments    | 项目源码 | 文件源码
def phase2_plot_update(f, ax1, data, passed, peak, hf1, hf2, progress):
        # Update the plot with latest measurement
        ax1.cla()
        freq_mhz = map(lambda x: x/1e6, data.frequency)
        sns.tsplot(data.ch1, time=freq_mhz, ax=ax1, interpolate=True)
        ax1.plot(peak[0]/1e6, peak[1], 'v')
        ax1.set(title='Beatnote Spectrum', xlabel='Frequency (MHz)', ylabel='Power (dBm)')
        ax1.annotate('Peak (%.2f MHz)\nLinewidth (%.2f kHz)\nCompleted %d%%' % (peak[0]/1e6, (hf2[0]-hf1[0])/1e3, progress), xy=(0.80,0.90), xycoords='axes fraction', fontsize=14)
        ax1.axvspan(hf1[0]/1e6,hf2[0]/1e6, alpha=0.1, color='green' if passed else 'red')
        plt.pause(0.01)
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def show_km(y, 
            n=4, 
            c=['b', 'g', 'r', 'k'],
            title='KMeans Clustering'):
    km = cluster.KMeans(n)
    yi = km.fit_predict(y)
    #c = ['b', 'g', 'r', 'k']
    for i in range(n):
        sns.tsplot(y[yi==i], color=c[i])
    plt.title(title)
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def show_cluster(y, 
            yi, 
            c=['b', 'g', 'r', 'k'],
            title='Clustering Resutls'):
    #km = cluster.KMeans(n)
    #yi = km.fit_predict(y)
    #c = ['b', 'g', 'r', 'k']
    set_yi = list(set(yi))
    n = len(set_yi)
    for i in set_yi:
        sns.tsplot(y[yi==i], color=c[set_yi.index(i)])
    plt.title(title)
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def plot( self):
        sns.tsplot(data=self.pdo, time="alpha", unit="unit", condition="Method", value="r2")
        plt.xscale('log')
        plt.ylabel( r'$r^2$')
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def plot( self):
        sns.tsplot(data=self.pdo, time="alpha", unit="unit", condition="Method", value="r2")
        plt.xscale('log')
        plt.ylabel( r'$r^2$')
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def show_both_cell( self, c, cell_id):
        X1part = self.X1part
        X2part = self.X2part
        y = self.y
        cell = self.cell
        X1_ylim = self.X1_ylim
        X2_ylim = self.X2_ylim
        cmethod = self.cmethod

        X3_int = X2part[ np.where(y==c)[0],:]
        X3_vel = X1part[ np.where(y==c)[0],:]
        cell3 = cell[ np.where(y==c)[0]]

        km = getattr(cluster, cmethod)(**cparam_d)      
        y3 = km.fit_predict( X3_int)

        # redefine based on cell_id
        X3_int = X3_int[ np.where(cell3==cell_id)[0],:]
        X3_vel = X3_vel[ np.where(cell3==cell_id)[0],:]   
        y3 = y3[np.where(cell3==cell_id)[0]]

        n_0 = X3_int[ np.where( y3==0)[0]].shape[0]
        n_1 = X3_int[ np.where( y3==1)[0]].shape[0]

        plt.figure(figsize=(9,4))
        plt.subplot(1,2,1)
        if n_0 > 0: sns.tsplot( X3_int[ np.where( y3==0)[0],:], color="blue")
        if n_1 > 0: sns.tsplot( X3_int[ np.where( y3==1)[0],:], color="green")
        plt.ylim(X2_ylim)
        plt.title("Cluster{0}:Intensity {1}:{2}".format(c, n_0, n_1))
        #plt.show()

        plt.subplot(1,2,2)
        #print("Velocity")
        if n_0 > 0: sns.tsplot( X3_vel[ np.where( y3==0)[0],:], color="blue")
        if n_1 > 0: sns.tsplot( X3_vel[ np.where( y3==1)[0],:], color="green")
        plt.ylim(X1_ylim)
        plt.title("Cluster{0}:Velocity {1}:{2}".format(c, n_0, n_1))
        plt.show()
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def np_tsplot( N):
    sns.tsplot( get_ts_df( N), time='time', unit='unit', value='value')
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def tsplot_clusters( X, y):
    """
    X, 2d array with y, cluster index
    """
    for yit in list(set(y)):
        sns.tsplot( X[y==yit,:], color=plt.cm.rainbow(yit/max(y)))
项目:PyNIT    作者:dvm-shlee    | 项目源码 | 文件源码
def tsplot(df, add_plot=None, figsize=None, xlim=None, ylim=None, xlabel=None, ylabel=None,
               label_size=None, tick_size=None, title=None, title_size=None, err=0, **kwargs):
        """

        :param df:
        :param figsize:
        :param xlim:
        :param ylim:
        :param xlabel:
        :param ylabel:
        :param label_size:
        :param tick_size:
        :param title:
        :param title_size:
        :param err: 0 = standard deviation, 1 = standard error
        :param kwargs:
        :return:
        """
        if not add_plot:
            fig, axes = plt.subplots(1,1,figsize=figsize)
        else:
            fig, axes = add_plot
        fig.patch.set_facecolor('white')
        axes.spines['top'].set_visible(False)
        axes.spines['right'].set_visible(False)

        if xlim:
            axes.set_xlim(xlim)
        if ylim:
            axes.set_ylim(ylim)
        if title:
            axes.set_title(title, size=title_size)
        if xlabel:
            axes.set_xlabel(xlabel, size=label_size)
        else:
            axes.set_xlabel('Time (s)', size=label_size)
        if ylabel:
            axes.set_ylabel(ylabel, size=label_size)
        else:
            axes.set_ylabel('Responses', size=label_size)
        axes.tick_params(labelsize=tick_size, direction='out', top='off', right='off')
        if err:
            sns.tsplot(df.T.values, err_style='sterr_band', ax=axes, **kwargs)
        else:
            sns.tsplot(df.T.values, err_style='std_band', ax=axes, **kwargs)
        return fig, axes
项目:pygcam    作者:JGCRI    | 项目源码 | 文件源码
def plotForcingSubplots(tsdata, filename=None, ci=95, show_figure=False, save_fig_kwargs=None):
    sns.set_context('paper')
    expList = tsdata['expName'].unique()

    nrows = 1
    ncols = len(expList)
    width  = 2 * ncols
    height = 2
    fig, axes = plt.subplots(nrows=nrows, ncols=ncols, sharey=True, figsize=(width, height))

    def dataForExp(expName):
        df = tsdata.query("expName == '%s'" % expName).copy()
        df.drop(['expName'], axis=1, inplace=True)
        df = pd.melt(df, id_vars=['runId'], var_name='year')
        return df

    for ax, expName in zip(axes, expList):
        df = dataForExp(expName)

        pos = expName.find('-')
        title = expName[:pos] if pos >= 0 else expName
        ax.set_title(title.capitalize())

        tsm.tsplot(df, time='year', unit='runId', value='value', ci=ci, ax=ax)

        ylabel = 'W m$^{-2}$' if ax == axes[0] else ''
        ax.set_ylabel(ylabel)
        ax.set_xlabel('') # no need to say "year"
        ax.axhline(0, color='navy', linewidth=0.5, linestyle='-')
        plt.setp(ax.get_xticklabels(), rotation=270)

    plt.tight_layout()

    # Save the file
    if filename:
        if isinstance(save_fig_kwargs, dict):
            fig.savefig(filename, **save_fig_kwargs)
        else:
            fig.savefig(filename)

    # Display the figure
    if show_figure:
        plt.show()

    return fig
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def show_both( self, c):
        X1part = self.X1part
        X2part = self.X2part
        y = self.y
        cell = self.cell
        X1_ylim = self.X1_ylim
        X2_ylim = self.X2_ylim
        cmethod = self.cmethod
        cparam_d = self.cparam_d

        #print("Cluster:", c)
        X3_int = X2part[ np.where(y==c)[0],:]
        X3_vel = X1part[ np.where(y==c)[0],:]

        #km = cluster.KMeans(2)
        #km = getattr(cluster, cmethod)(2)
        km = getattr(cluster, cmethod)(**cparam_d)
        y3 = km.fit_predict( X3_int)

        plt.figure(figsize=(9,4))
        plt.subplot(1,2,1)
        #print("Intensity")
        n_0 = X3_int[ np.where( y3==0)[0]].shape[0]
        n_1 = X3_int[ np.where( y3==1)[0]].shape[0]

        sns.tsplot( X3_int[ np.where( y3==0)[0],:], color="blue")
        sns.tsplot( X3_int[ np.where( y3==1)[0],:], color="green")
        plt.ylim(X2_ylim)
        plt.title("Cluster{0}:X2 {1}:{2}".format(c, n_0, n_1))
        #plt.show()

        plt.subplot(1,2,2)
        #print("Velocity")
        sns.tsplot( X3_vel[ np.where( y3==0)[0],:], color="blue")
        sns.tsplot( X3_vel[ np.where( y3==1)[0],:], color="green")
        plt.ylim(X1_ylim)
        plt.title("Cluster{0}:X1 {1}:{2}".format(c, n_0, n_1))
        plt.show()

        cell3 = cell[ np.where(y==c)[0]]
        plt.subplot(1,2,1)
        plt.stem( cell3[np.where( y3==0)[0]], linefmt='b-', markerfmt='bo')
        plt.title("Cell Index - Subcluster 1")
        plt.subplot(1,2,2)
        plt.stem( cell3[np.where( y3==1)[0]], linefmt='g-', markerfmt='go')   
        plt.title("Cell Index - Subcluster 2")
        plt.show()

        return y3
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def show_both( self, c):
        X1part = self.X1part
        X2part = self.X2part
        y = self.y
        cell = self.cell
        X1_ylim = self.X1_ylim
        X2_ylim = self.X2_ylim
        cmethod = self.cmethod
        cparam_d = self.cparam_d

        #print("Cluster:", c)
        X3_int = X2part[ np.where(y==c)[0],:]
        X3_vel = X1part[ np.where(y==c)[0],:]

        #km = cluster.KMeans(2)
        #km = getattr(cluster, cmethod)(2)
        km = getattr(cluster, cmethod)(**cparam_d)
        y3 = km.fit_predict( X3_int)

        plt.figure(figsize=(9,4))
        plt.subplot(1,2,1)
        #print("Intensity")
        n_0 = X3_int[ np.where( y3==0)[0]].shape[0]
        n_1 = X3_int[ np.where( y3==1)[0]].shape[0]

        sns.tsplot( X3_int[ np.where( y3==0)[0],:], color="blue")
        sns.tsplot( X3_int[ np.where( y3==1)[0],:], color="green")
        plt.ylim(X2_ylim)
        plt.title("Cluster{0}:X2 {1}:{2}".format(c, n_0, n_1))
        #plt.show()

        plt.subplot(1,2,2)
        #print("Velocity")
        sns.tsplot( X3_vel[ np.where( y3==0)[0],:], color="blue")
        sns.tsplot( X3_vel[ np.where( y3==1)[0],:], color="green")
        plt.ylim(X1_ylim)
        plt.title("Cluster{0}:X1 {1}:{2}".format(c, n_0, n_1))
        plt.show()

        cell3 = cell[ np.where(y==c)[0]]
        plt.subplot(1,2,1)
        plt.stem( cell3[np.where( y3==0)[0]], linefmt='b-', markerfmt='bo')
        plt.title("Cell Index - Subcluster 1")
        plt.subplot(1,2,2)
        plt.stem( cell3[np.where( y3==1)[0]], linefmt='g-', markerfmt='go')   
        plt.title("Cell Index - Subcluster 2")
        plt.show()

        return y3
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def show_both_kmeans( self, c):
        X1part = self.X1part
        X2part = self.X2part
        y = self.y
        cell = self.cell
        X1_ylim = self.X1_ylim
        X2_ylim = self.X2_ylim
        cmethod = self.cmethod
        cparam_d = self.cparam_d

        nc = cparam_d["n_clusters"]

        #print("Cluster:", c)
        X3_int = X2part[ y==c,:]
        X3_vel = X1part[ y==c,:]

        #km = cluster.KMeans(2)
        #km = getattr(cluster, cmethod)(2)
        assert cmethod == "KMeans"
        km = cluster.KMeans( nc)
        y3 = km.fit_predict( X3_int)

        plt.figure(figsize=(9,4))
        plt.subplot(1,2,1)
        #print("Intensity")
        n_l = [ X3_int[ y3==i].shape[0] for i in range(nc)]

        for i in range(nc):
            sns.tsplot( X3_int[ y3==i,:], color=plt.cm.rainbow(i/nc))
        plt.ylim(X2_ylim)
        plt.title("Cluster{0}:X2 {1}".format(c, n_l))
        #plt.show()

        plt.subplot(1,2,2)
        #print("Velocity")
        for i in range(nc):
            sns.tsplot( X3_vel[ y3==i,:], color=plt.cm.rainbow(i/nc))
        plt.ylim(X1_ylim)
        plt.title("Cluster{0}:X1 {1}".format(c, n_l))
        plt.show()

        return y3
项目:extract    作者:dblalock    | 项目源码 | 文件源码
def plotScalabilityResultsForTest(dfs, test, colName, title, xlabel, savePath,
    ax=None, logxscale=False, logyscale=True):

    dfs = filter(lambda df: df['test'][0] == test, dfs)

    if ax is None:
        plt.figure()
        ax = plt.gca()

    lines = []
    labels = []
    for df in dfs:
        x = df[colName]
        y = df[TIME_COL] / 60. # convert to minutes
        algo = df[ALGORITHM_COL][0]
        p = ALGO_2_LINE_PARAMS[algo]
        line, = ax.plot(x, y, label=algo, color=p.color, lw=p.width, ls=p.style)
        ax.set_xlim([np.min(x), np.max(x)])

        lines.append(line)
        labels.append(algo)

    # seaborn tsplot version; confidence intervals like invisibly thin
    # around the lines, so not much point (although verify this once
    # all experiments run TODO)
    # df = pd.concat(dfs, ignore_index=True)
    # colors = dict([algo, p.color] for algo, p in ALGO_2_LINE_PARAMS.items()])
    # sb.tsplot(time=colName, value=TIME_COL, unit=SEED_COL,
    #   condition=ALGORITHM_COL, data=df, ax=ax)
    # lines, labels = ax.get_legend_handles_labels()

    if logxscale:
        ax.set_xscale('log')
    if logyscale:
        ax.set_yscale('log')
    # x = df[colName]
    # ax.set_xlim([np.min(x), np.max(x)])

    ax.set_title(title)
    ax.set_xlabel(xlabel)
    ax.set_ylabel("Runtime (min)")

    if savePath:
        plt.savefig(savePath)

    return lines, labels