Python seaborn 模块,pointplot() 实例源码

我们从Python开源项目中,提取了以下12个代码示例,用于说明如何使用seaborn.pointplot()

项目:nmt-repr-analysis    作者:boknilev    | 项目源码 | 文件源码
def plot_averages_by_type(df, figname, fignum, use_en_source=True, pointplot=True, layer0=True):

    plt.figure(fignum)
    if use_en_source:
        df_side = df[(df.source == 'en') & (df.target != 'en')]
    else:
        df_side = df[(df.source != 'en') & (df.target == 'en')]
    if not layer0:
        df_side = df_side[df_side.layer != '0']


    plotfunc = sns.pointplot if pointplot else sns.boxplot
    if pointplot:
        plotfunc(x='accuracy', y='relation', hue='layer', data=df_side, join=False)
    else:
        plotfunc(x='accuracy', y='relation', hue='layer', data=df_side)
    plt.xlabel('Accuracy')
    plt.ylabel('')

    plt.tight_layout()
    plt.savefig(figname)
    return fignum + 1
项目:cifar10-tensorflow    作者:namakemono    | 项目源码 | 文件源码
def save_mapping_cmp(is_power_point = False):
    dfs = []
    for filename in glob.glob("../output/cifar10classifier_resnet32_*.csv"):
        target = filename.split("_")[-1].split(".csv")[0] 
        if target in ["momentum", "bnafteraddition", "fullpreactivation", "noactivation", "relubeforeaddition", "reluonlypreactivation"]:
            df = pd.read_csv(filename)
            df["train_error"] = 1 - df["train_accuracy"]
            df["test_error"] = 1 - df["test_accuracy"]
            dfs.append(df)
    total_df = pd.concat(dfs)
    total_df["name"] = total_df["name"].str.split("_").str.get(-1).str.replace("Momentum", "Nesterov(Original Paper)")
    ax = sns.pointplot(x="epoch", y="test_error", hue="name", data=total_df, scale=0.2)
    if is_power_point:
        ax.legend(loc="lower left", markerscale=9.0, fontsize=20)
    else:
        ax.legend(markerscale=3.0)
    ax.set(ylim=(0, 0.2))
    ax.set_xticklabels([i if i % 10 == 0 else "" for i in range(200)])
    ax.set(xlabel='epoch', ylabel='error(%)')
    ax.get_figure().savefig("../figures/resnet.mapping.png")
    sns.plt.close()
项目:cifar10-tensorflow    作者:namakemono    | 项目源码 | 文件源码
def save_solvers_cmp(is_power_point = False):
    dfs = []
    for filename in glob.glob("../output/cifar10classifier_resnet32_*.csv"):
        target = filename.split("_")[-1].split(".csv")[0] 
        if target in ["adadelta", "adagrad", "adam", "momentum", "rmsprop"]:
            df = pd.read_csv(filename)
            df["train_error"] = 1 - df["train_accuracy"]
            df["test_error"] = 1 - df["test_accuracy"]
            dfs.append(df)
    total_df = pd.concat(dfs)
    total_df["name"] = total_df["name"].str.split("_").str.get(-1).str.replace("Momentum", "Nesterov(Original Paper)")
    ax = sns.pointplot(x="epoch", y="test_error", hue="name", data=total_df, scale=0.2)
    if is_power_point:
        ax.legend(loc="lower left", markerscale=9.0, fontsize=20)  
    else:
        ax.legend(loc="lower left", markerscale=3.0)
    ax.set(ylim=(0, 0.2))
    ax.set_xticklabels([i if i % 10 == 0 else "" for i in range(200)])
    ax.set(xlabel='epoch', ylabel='error(%)')
    ax.get_figure().savefig("../figures/resnet.solvers.png")
    sns.plt.close()
项目:cifar10-tensorflow    作者:namakemono    | 项目源码 | 文件源码
def save_layers_cmp(is_power_point = False):
    total_df = None
    for layer in [20, 32, 44, 56, 110]:
        df = pd.read_csv("../output/cifar10classifier_resnet%d.csv" % layer)
        df["train_error"] = 1 - df["train_accuracy"]
        df["test_error"] = 1 - df["test_accuracy"]
        df = df[df["epoch"] < 150]
        if total_df is None:
            total_df = df
        else:
            total_df = pd.concat([total_df, df])
    total_df["name"] = total_df["name"].str.split("_").str.get(-1)
    ax = sns.pointplot(x="epoch", y="test_error", hue="name", data=total_df, scale=0.2)
    if is_power_point:
        ax.legend(loc="lower left", markerscale=9.0, fontsize=20)  
    else:
        ax.legend(markerscale=3.0)
    ax.set(ylim=(0, 0.2))
    ax.set_xticklabels([i if i % 10 == 0 else "" for i in range(150)])
    ax.set(xlabel='epoch', ylabel='error(%)')
    ax.get_figure().savefig("../figures/resnet.layers.png")
    sns.plt.close()
项目:fitbit-analyzer    作者:5agado    | 项目源码 | 文件源码
def plotDailyStatsSleep(stats, columns=None):
    """
    Plot daily stats. Fill all data range, and put NaN for days without measures
    :param data: data to plot
    """
    MEASURE_NAME = 'date'
    if not columns:
        columns = ['sleep_inefficiency', 'sleep_hours']
    dataToPlot = _prepareDailyStats(stats, columns)

    f, axes = getAxes(2,1)
    xTicksDiv = min(10, len(dataToPlot))
    #xticks = [(x-pd.DateOffset(years=1, day=2)).date() for x in stats.date]
    xticks = [x.date() for x in dataToPlot.date]
    keptticks = xticks[::int(len(xticks)/xTicksDiv)]
    xticks = ['' for _ in xticks]
    xticks[::int(len(xticks)/xTicksDiv)] = keptticks
    for i, c in enumerate(columns):
        g =sns.pointplot(x=MEASURE_NAME, y=NAMES[c], data=dataToPlot, ax=axes[i])
        g.set_xticklabels([])
        g.set_xlabel('')
    g.set_xticklabels(xticks, rotation=45)
    sns.plt.show()
项目:stanity    作者:hammerlab    | 项目源码 | 文件源码
def plot(self):
        """ Graphical summary of pointwise pareto-k importance-sampling indices

        Pareto-k tail indices are plotted (on the y axis) for each observation unit (on the x axis)

        """
        seaborn.pointplot(
            y = self.pointwise.pareto_k,
            x = self.pointwise.index,
            join = False)
        #pyplot.axhline(0.5)
项目:nmt-repr-analysis    作者:boknilev    | 项目源码 | 文件源码
def plot_averages_by_distance(df, figname, fignum, use_en_source=True, num_accs=24, pointplot=True, hue='Distance'):

    plt.figure(fignum)
    if use_en_source:
        df_side = df[(df.source == 'en') & (df.target != 'en')]
        layers = np.concatenate([[i]*5 for i in range(5)] * num_accs)        
    else:
        df_side = df[(df.source != 'en') & (df.target == 'en')]
        layers = list(range(5))*5*num_accs

    accs = get_accs_from_df(df_side, col_pref='dist')
    flat_accs = np.concatenate(accs)
    dists = np.concatenate([[pretty_dist_names_list[i]]*75 for i in range(8)])
    df_plot = pd.DataFrame({'Layer' : layers, 'Accuracy' : flat_accs, 'Distance' : dists }) 
    #print(df_plot)
    plotfunc = sns.pointplot if pointplot else sns.boxplot
    if hue == 'Distance':
        plotfunc(x='Layer', y='Accuracy', data=df_plot, hue='Distance')
    else:
        plotfunc(x='Distance', y='Accuracy', data=df_plot, hue='Layer')
        plt.xticks(range(8), pretty_dist_names_list)


    plt.tight_layout()
    plt.savefig(figname)
    return fignum + 1
项目:AppsOfDataAnalysis    作者:nhanloukiala    | 项目源码 | 文件源码
def line_plot(data ,title = "", x_title ="", y_title="", legend_label="",group_labels=None):
    plot_data = DataFrame()

    plot_data['x'] = data[:, 1].astype(int)
    plot_data['y'] = data[:, 0].astype(float)

    plot_data[legend_label] = data[:, 2]
    sns.set(style="whitegrid")
    g = sns.pointplot(x="x", y="y", hue=legend_label, data=plot_data, hue_order=np.unique(plot_data[legend_label]))
    plt.title(title, fontsize=25)
    plt.ylabel(y_title, fontsize=12)
    plt.xlabel(x_title, fontsize=12)
    plt.show()
项目:AppsOfDataAnalysis    作者:nhanloukiala    | 项目源码 | 文件源码
def line_plot(data ,title = "", x_title ="", y_title="", legend_label="",group_labels=None):
    plot_data = DataFrame()

    plot_data['x'] = data[:, 1].astype(int)
    plot_data['y'] = data[:, 0].astype(float)

    plot_data[legend_label] = data[:, 2]
    sns.set(style="whitegrid")
    g = sns.pointplot(x="x", y="y", hue=legend_label, data=plot_data, hue_order=np.unique(plot_data[legend_label]))
    plt.title(title, fontsize=14)
    plt.ylabel(y_title, fontsize=12)
    plt.xlabel(x_title, fontsize=12)
    plt.show()
项目:Waskom_PNAS_2017    作者:WagnerLabPapers    | 项目源码 | 文件源码
def plot_points(df, axes):

    for exp, ax in zip(["dots", "sticks", "rest"], axes):

        exp_df = pd.melt(df.query("exp == @exp"),
                         "subj", ["within", "between"], "test", "corr")

        sns.pointplot(x="test", y="corr", hue="test", data=exp_df,
                      dodge=.5, join=False, ci=95,
                      palette=[".15", ".5"], ax=ax)
        plt.setp(ax.lines, linewidth=2)

        sns.pointplot(x="test", y="corr", hue="subj", data=exp_df,
                      palette=[".75"], scale=.75, ax=ax)
        plt.setp(ax.collections[:], facecolor="w", zorder=20)

        ax.legend_ = None
        ax.set(ylabel="",
               xlabel="",
               xticks=[-.1, 1.1],
               xticklabels=["Same\ncontext", "Different\ncontext"])

    axes[0].set(ylim=(0, .105), ylabel="Timeseries correlation (r)")
    axes[1].set(ylim=(0, .0525))
    axes[2].set(ylim=(0, .0525))

    for ax in axes:
        sns.despine(ax=ax, trim=True)
项目:Waskom_PNAS_2017    作者:WagnerLabPapers    | 项目源码 | 文件源码
def plot_swarms(df, axes, palette):

    for exp, ax in zip(["dots", "sticks"], axes):

        exp_df = df.query("experiment == @exp")

        ax.axhline(.5, .1, .9, dashes=(5, 2), color=".6")        
        ax.set(ylim=(.4, .9), yticks=[.4, .5, .6, .7, .8, .9])

        sns.pointplot(x="roi", y="acc", data=exp_df,
                      palette=palette, join=False, ci=None, ax=ax)
        points_to_lines(ax, lw=3)

        sns.swarmplot(x="roi", y="acc", data=exp_df, size=4,
                      color=".85", # facecolor="none",
                      linewidth=1, edgecolor=".4", ax=ax)

        ax.set(xlabel="", ylabel="", xticklabels=["IFS", "MFC"])

    ax_l, ax_r = axes
    ax_l.set(ylabel="Decoding accuracy")
    ax_r.set(yticks=[])

    ax_l.text(.5, .91, "Experiment 1", ha="center", va="center", size=7.5)
    ax_r.text(.5, .91, "Experiment 2", ha="center", va="center", size=7.5)

    sns.despine(ax=ax_l, trim=True)
    sns.despine(ax=ax_r, left=True, trim=True)
项目:fitbit-analyzer    作者:5agado    | 项目源码 | 文件源码
def _plotWeekdayByMonthStats(stats, stat_name):
    dataToPlot = _prepareWeekdayByMonthStats(stats)

    # Plot
    g = sns.pointplot(data=dataToPlot, x="day", y=stat_name, hue="month", order=dayOfWeekOrder)
    g.set(xlabel='')
    g.set_ylabel(NAMES[stat_name])
    return g
    #sns.plt.show()