Python setuptools.command 模块,build_ext() 实例源码

我们从Python开源项目中,提取了以下14个代码示例,用于说明如何使用setuptools.command.build_ext()

项目:pytorch-dist    作者:apaszke    | 项目源码 | 文件源码
def run(self):
        # cwrap depends on pyyaml, so we can't import it earlier
        from tools.cwrap import cwrap
        from tools.cwrap.plugins.THPPlugin import THPPlugin
        from tools.cwrap.plugins.ArgcountSortPlugin import ArgcountSortPlugin
        from tools.cwrap.plugins.AutoGPU import AutoGPU
        from tools.cwrap.plugins.BoolOption import BoolOption
        from tools.cwrap.plugins.KwargsPlugin import KwargsPlugin
        from tools.cwrap.plugins.NullableArguments import NullableArguments
        from tools.cwrap.plugins.CuDNNPlugin import CuDNNPlugin
        cwrap('torch/csrc/generic/TensorMethods.cwrap', plugins=[
            BoolOption(), THPPlugin(), AutoGPU(condition='IS_CUDA'),
            ArgcountSortPlugin(), KwargsPlugin(),
        ])
        cwrap('torch/csrc/cudnn/cuDNN.cwrap', plugins=[
            CuDNNPlugin(), NullableArguments()
        ])
        # It's an old-style class in Python 2.7...
        setuptools.command.build_ext.build_ext.run(self)
项目:pytorch-dist    作者:apaszke    | 项目源码 | 文件源码
def run(self):
        self.run_command('build_py')
        self.run_command('build_ext')
项目:pytorch    作者:tylergenter    | 项目源码 | 文件源码
def run(self):
        self.run_command('build_py')
        self.run_command('build_ext')
项目:pytorch    作者:tylergenter    | 项目源码 | 文件源码
def run(self):
        # Print build options
        if WITH_NUMPY:
            print('-- Building with NumPy bindings')
        else:
            print('-- NumPy not found')
        if WITH_CUDNN:
            print('-- Detected cuDNN at ' + CUDNN_LIB_DIR + ', ' + CUDNN_INCLUDE_DIR)
        else:
            print('-- Not using cuDNN')
        if WITH_CUDA:
            print('-- Detected CUDA at ' + CUDA_HOME)
        else:
            print('-- Not using CUDA')
        if WITH_NCCL and SYSTEM_NCCL:
            print('-- Using system provided NCCL library')
        elif WITH_NCCL:
            print('-- Building NCCL library')
        else:
            print('-- Not using NCCL')

        # cwrap depends on pyyaml, so we can't import it earlier
        from tools.cwrap import cwrap
        from tools.cwrap.plugins.THPPlugin import THPPlugin
        from tools.cwrap.plugins.ArgcountSortPlugin import ArgcountSortPlugin
        from tools.cwrap.plugins.AutoGPU import AutoGPU
        from tools.cwrap.plugins.BoolOption import BoolOption
        from tools.cwrap.plugins.KwargsPlugin import KwargsPlugin
        from tools.cwrap.plugins.NullableArguments import NullableArguments
        from tools.cwrap.plugins.CuDNNPlugin import CuDNNPlugin
        from tools.cwrap.plugins.WrapDim import WrapDim
        thp_plugin = THPPlugin()
        cwrap('torch/csrc/generic/TensorMethods.cwrap', plugins=[
            BoolOption(), thp_plugin, AutoGPU(condition='IS_CUDA'),
            ArgcountSortPlugin(), KwargsPlugin(), WrapDim()
        ])
        cwrap('torch/csrc/cudnn/cuDNN.cwrap', plugins=[
            CuDNNPlugin(), NullableArguments()
        ])
        # It's an old-style class in Python 2.7...
        setuptools.command.build_ext.build_ext.run(self)
项目:pykaldi    作者:pykaldi    | 项目源码 | 文件源码
def install(self):
        self.build_dir = 'build/lib'
        setuptools.command.install_lib.install_lib.install(self)

################################################################################
# Setup pykaldi
################################################################################

# We add a 'dummy' extension so that setuptools runs the build_ext step.
项目:pytorch-coriander    作者:hughperkins    | 项目源码 | 文件源码
def run(self):
        self.run_command('build_py')
        self.run_command('build_ext')
项目:pytorch-coriander    作者:hughperkins    | 项目源码 | 文件源码
def run(self):
        # Print build options
        if WITH_NUMPY:
            print('-- Building with NumPy bindings')
        else:
            print('-- NumPy not found')
        if WITH_CUDNN:
            print('-- Detected cuDNN at ' + CUDNN_LIB_DIR + ', ' + CUDNN_INCLUDE_DIR)
        else:
            print('-- Not using cuDNN')
        if WITH_CUDA:
            print('-- Detected CUDA at ' + CUDA_HOME)
        else:
            print('-- Not using CUDA')
        if WITH_NCCL and SYSTEM_NCCL:
            print('-- Using system provided NCCL library')
        elif WITH_NCCL:
            print('-- Building NCCL library')
        else:
            print('-- Not using NCCL')

        # cwrap depends on pyyaml, so we can't import it earlier
        from tools.cwrap import cwrap
        from tools.cwrap.plugins.THPPlugin import THPPlugin
        from tools.cwrap.plugins.ArgcountSortPlugin import ArgcountSortPlugin
        from tools.cwrap.plugins.AutoGPU import AutoGPU
        from tools.cwrap.plugins.BoolOption import BoolOption
        from tools.cwrap.plugins.KwargsPlugin import KwargsPlugin
        from tools.cwrap.plugins.NullableArguments import NullableArguments
        from tools.cwrap.plugins.CuDNNPlugin import CuDNNPlugin
        from tools.cwrap.plugins.WrapDim import WrapDim
        thp_plugin = THPPlugin()
        cwrap('torch/csrc/generic/TensorMethods.cwrap', plugins=[
            BoolOption(), thp_plugin, AutoGPU(condition='IS_CUDA'),
            ArgcountSortPlugin(), KwargsPlugin(), WrapDim()
        ])
        cwrap('torch/csrc/cudnn/cuDNN.cwrap', plugins=[
            CuDNNPlugin(), NullableArguments()
        ])
        # It's an old-style class in Python 2.7...
        setuptools.command.build_ext.build_ext.run(self)
项目:bezier    作者:dhermes    | 项目源码 | 文件源码
def __init__(self, *args, **kwargs):
        setuptools.command.build_ext.build_ext.__init__(self, *args, **kwargs)
        self.journal_file = os.environ.get(JOURNAL_ENV)
        self.commands = []
项目:bezier    作者:dhermes    | 项目源码 | 文件源码
def run(self):
        self.set_f90_compiler()
        self.start_journaling()

        self.compile_fortran_obj_files()

        result = setuptools.command.build_ext.build_ext.run(self)
        self.save_journal()
        self.cleanup()

        return result
项目:pytorch    作者:ezyang    | 项目源码 | 文件源码
def run(self):
        self.run_command('build_py')
        self.run_command('build_ext')
项目:cppimport    作者:tbenthompson    | 项目源码 | 文件源码
def __init__(self, libdest, *args, **kwargs):
        self.libdest = libdest
        setuptools.Extension.__init__(self, *args, **kwargs)

# Subclass setuptools build_ext to put the compiled shared library in the
# appropriate place in the source tree.
项目:pytorch    作者:pytorch    | 项目源码 | 文件源码
def run(self):
        self.run_command('build_py')
        self.run_command('build_ext')
项目:pytorch    作者:ezyang    | 项目源码 | 文件源码
def run(self):
        # Print build options
        if WITH_NUMPY:
            print('-- Building with NumPy bindings')
        else:
            print('-- NumPy not found')
        if WITH_CUDNN:
            print('-- Detected cuDNN at ' + CUDNN_LIB_DIR + ', ' + CUDNN_INCLUDE_DIR)
        else:
            print('-- Not using cuDNN')
        if WITH_CUDA:
            print('-- Detected CUDA at ' + CUDA_HOME)
        else:
            print('-- Not using CUDA')
        if WITH_NCCL and WITH_SYSTEM_NCCL:
            print('-- Using system provided NCCL library at ' +
                  NCCL_LIB_DIR + ', ' + NCCL_INCLUDE_DIR)
        elif WITH_NCCL:
            print('-- Building NCCL library')
        else:
            print('-- Not using NCCL')
        if WITH_DISTRIBUTED:
            print('-- Building with distributed package ')
            monkey_patch_THD_link_flags()
        else:
            print('-- Building without distributed package')

        # cwrap depends on pyyaml, so we can't import it earlier
        from tools.cwrap import cwrap
        from tools.cwrap.plugins.THPPlugin import THPPlugin
        from tools.cwrap.plugins.ArgcountSortPlugin import ArgcountSortPlugin
        from tools.cwrap.plugins.AutoGPU import AutoGPU
        from tools.cwrap.plugins.BoolOption import BoolOption
        from tools.cwrap.plugins.KwargsPlugin import KwargsPlugin
        from tools.cwrap.plugins.NullableArguments import NullableArguments
        from tools.cwrap.plugins.CuDNNPlugin import CuDNNPlugin
        from tools.cwrap.plugins.WrapDim import WrapDim
        from tools.cwrap.plugins.AssertNDim import AssertNDim
        from tools.cwrap.plugins.Broadcast import Broadcast
        from tools.cwrap.plugins.ProcessorSpecificPlugin import ProcessorSpecificPlugin
        from tools.autograd.gen_variable_type import gen_variable_type
        thp_plugin = THPPlugin()
        cwrap('torch/csrc/generic/TensorMethods.cwrap', plugins=[
            ProcessorSpecificPlugin(), BoolOption(), thp_plugin,
            AutoGPU(condition='IS_CUDA'), ArgcountSortPlugin(), KwargsPlugin(),
            AssertNDim(), WrapDim(), Broadcast()
        ])
        cwrap('torch/csrc/cudnn/cuDNN.cwrap', plugins=[
            CuDNNPlugin(), NullableArguments()
        ])
        # Build ATen based Variable classes
        autograd_gen_dir = 'torch/csrc/autograd/generated'
        if not os.path.exists(autograd_gen_dir):
            os.mkdir(autograd_gen_dir)
        gen_variable_type(
            'torch/lib/build/ATen/ATen/Declarations.yaml',
            autograd_gen_dir)

        # It's an old-style class in Python 2.7...
        setuptools.command.build_ext.build_ext.run(self)
项目:pytorch    作者:pytorch    | 项目源码 | 文件源码
def run(self):

        # Print build options
        if WITH_NUMPY:
            print('-- Building with NumPy bindings')
        else:
            print('-- NumPy not found')
        if WITH_CUDNN:
            print('-- Detected cuDNN at ' + CUDNN_LIB_DIR + ', ' + CUDNN_INCLUDE_DIR)
        else:
            print('-- Not using cuDNN')
        if WITH_CUDA:
            print('-- Detected CUDA at ' + CUDA_HOME)
        else:
            print('-- Not using CUDA')
        if WITH_NCCL and WITH_SYSTEM_NCCL:
            print('-- Using system provided NCCL library at ' +
                  NCCL_SYSTEM_LIB + ', ' + NCCL_INCLUDE_DIR)
        elif WITH_NCCL:
            print('-- Building NCCL library')
        else:
            print('-- Not using NCCL')
        if WITH_DISTRIBUTED:
            print('-- Building with distributed package ')
            monkey_patch_THD_link_flags()
        else:
            print('-- Building without distributed package')

        generate_code(ninja_global)

        if IS_WINDOWS:
            build_temp = self.build_temp
            build_dir = 'torch/csrc'

            ext_filename = self.get_ext_filename('_C')
            lib_filename = '.'.join(ext_filename.split('.')[:-1]) + '.lib'

            _C_LIB = os.path.join(build_temp, build_dir, lib_filename).replace('\\', '/')

            THNN.extra_link_args += [_C_LIB]
            if WITH_CUDA:
                THCUNN.extra_link_args += [_C_LIB]
            else:
                # To generate .obj files for AutoGPU for the export class
                # a header file cannot build, so it has to be copied to someplace as a source file
                if os.path.exists("torch/csrc/generated/AutoGPU_cpu_win.cpp"):
                    os.remove("torch/csrc/generated/AutoGPU_cpu_win.cpp")
                shutil.copyfile("torch/csrc/cuda/AutoGPU.h", "torch/csrc/generated/AutoGPU_cpu_win.cpp")
        if WITH_NINJA:
            # before we start the normal build make sure all generated code
            # gets built
            ninja_global.run()

        # It's an old-style class in Python 2.7...
        setuptools.command.build_ext.build_ext.run(self)