我们从Python开源项目中,提取了以下8个代码示例,用于说明如何使用skimage.color.hsv2rgb()。
def create_image(model, x, y, r, z): ''' create an image for the given latent vector z ''' # create input vector Z = np.repeat(z, x.shape[0]).reshape((-1,x.shape[0])) X = np.concatenate([x, y, r, Z.T], axis=1) pred = model.predict(X) img = [] for k in range(pred.shape[1]): yp = pred[:, k] # if k == pred.shape[1]-1: # yp = np.sin(yp) yp = (yp - yp.min()) / (yp.max()-yp.min()) img.append(yp.reshape(y_dim, x_dim)) img = np.dstack(img) if img.shape[-1] == 3: from skimage.color import hsv2rgb img = hsv2rgb(img) return (img*255).astype(np.uint8)
def from_hsv(picture): return color.hsv2rgb(picture)
def HSVAtoRGBA(image): # print("image:", image) hsv = image[:,:,:3] # print("hsv:", hsv) a = image[:,:,3:] hsv = hsv.clip(0,1) # print("hsvclip:", hsv) a = a.clip(0,1) # print("aclip:", hsv) rgb = color.hsv2rgb(hsv) a = a rgba = np.concatenate((rgb,a),axis=2) * 255.0 # print("rgba:", hsv) rgba = rgba.clip(0,255).astype(np.uint8) return rgba
def add_hsv_noise(rgb, hue_offset, saturation_offset, value_offset, proba=0.5): mask = np.all(rgb != 0, axis=2) hsv = rgb2hsv(rgb) if random.uniform(0, 1) > proba: hsv[:, :, 0] = (hsv[:, :, 0] + random.uniform(-hue_offset, hue_offset)) % 1 if random.uniform(0, 1) > proba-0.1: hsv[:, :, 1] = (hsv[:, :, 1] + random.uniform(-saturation_offset, saturation_offset)) % 1 if random.uniform(0, 1) > proba-0.1: hsv[:, :, 2] = (hsv[:, :, 2] + random.uniform(-value_offset, value_offset)) % 1 rgb = hsv2rgb(hsv) * 255 return rgb.astype(np.uint8) * mask[:, :, np.newaxis]
def trans(self, img1, img2, img3): rst = np.array((img1.T, img2.T, img3.T), dtype=np.float64) rst /= 255.0 rst = color.hsv2rgb(rst.T) rst *= 255 return rst.astype(np.uint8) # ============= RGB - CIE ============
def get_overlayed_image(x, c, gray_factor_bg = 0.3): ''' For an image x and a relevance vector c, overlay the image with the relevance vector to visualise the influence of the image pixels. ''' imDim = x.shape[0] if np.ndim(c)==1: c = c.reshape((imDim,imDim)) if np.ndim(x)==2: # this happens with the MNIST Data x = 1-np.dstack((x, x, x))*gray_factor_bg # make it a bit grayish if np.ndim(x)==3: # this is what happens with cifar data x = color.rgb2gray(x) x = 1-(1-x)*0.5 x = np.dstack((x,x,x)) alpha = 0.8 # Construct a colour image to superimpose im = plt.imshow(c, cmap = cm.seismic, vmin=-np.max(np.abs(c)), vmax=np.max(np.abs(c)), interpolation='nearest') color_mask = im.to_rgba(c)[:,:,[0,1,2]] # Convert the input image and color mask to Hue Saturation Value (HSV) colorspace img_hsv = color.rgb2hsv(x) color_mask_hsv = color.rgb2hsv(color_mask) # Replace the hue and saturation of the original image # with that of the color mask img_hsv[..., 0] = color_mask_hsv[..., 0] img_hsv[..., 1] = color_mask_hsv[..., 1] * alpha img_masked = color.hsv2rgb(img_hsv) return img_masked
def TF_shift_hue(x, shift=0.0): assert len(x.shape) == 3 h, w, nc = x.shape hsv = rgb2hsv(x) hsv[:,:,0] += shift return hsv2rgb(hsv)
def _change_brightness(self, X): X = color.rgb2hsv(X.transpose(1, 2, 0)/255.0) diff = np.random.uniform(-1 * self._brightness, self._brightness) X[:,:,2] = np.clip((X[:,:,2] + diff), 0.0, 1.0) X = color.hsv2rgb(X).transpose(2, 0, 1) * 255.0 return X.astype(np.int32)