Python skimage 模块,io() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用skimage.io()

项目:TAC-GAN    作者:dashayushman    | 项目源码 | 文件源码
def load_image_array_flowers(image_file, image_size):
    img = skimage.io.imread(image_file)
    # GRAYSCALE
    if len(img.shape) == 2:
        img_new = np.ndarray( (img.shape[0], img.shape[1], 3), dtype = 'uint8')
        img_new[:,:,0] = img
        img_new[:,:,1] = img
        img_new[:,:,2] = img
        img = img_new

    img_resized = skimage.transform.resize(img, (image_size, image_size))

    # FLIP HORIZONTAL WIRH A PROBABILITY 0.5
    if random.random() > 0.5:
        img_resized = np.fliplr(img_resized)


    return img_resized.astype('float32')
项目:Automatic-Image-Colorization    作者:Armour    | 项目源码 | 文件源码
def load_image(path):
    # load image
    img = skimage.io.imread(path)
    img = img / 255.0
    assert (0 <= img).all() and (img <= 1.0).all()
    # print "Original Image Shape: ", img.shape
    # we crop image from center
    short_edge = min(img.shape[:2])
    yy = int((img.shape[0] - short_edge) / 2)
    xx = int((img.shape[1] - short_edge) / 2)
    crop_img = img[yy: yy + short_edge, xx: xx + short_edge]
    # resize to 224, 224
    resized_img = skimage.transform.resize(crop_img, (224, 224))
    return resized_img


# returns the top1 string
项目:Automatic-Image-Colorization    作者:Armour    | 项目源码 | 文件源码
def load_image2(path, height=None, width=None):
    # load image
    img = skimage.io.imread(path)
    img = img / 255.0
    if height is not None and width is not None:
        ny = height
        nx = width
    elif height is not None:
        ny = height
        nx = img.shape[1] * ny / img.shape[0]
    elif width is not None:
        nx = width
        ny = img.shape[0] * nx / img.shape[1]
    else:
        ny = img.shape[0]
        nx = img.shape[1]
    return skimage.transform.resize(img, (ny, nx))
项目:PyFRAP    作者:alexblaessle    | 项目源码 | 文件源码
def loadImg(fn,enc,dtype='float'):

    """Loads image from filename fn with encoding enc and returns it as with given dtype.

    Args:
        fn (str): File path.
        enc (str): Image encoding, e.g. 'uint16'.

    Keyword Args:
        dtype (str): Datatype of pixels of returned image.

    Returns:
        numpy.ndarray: Loaded image.
    """

    #Load image
    img = skimage.io.imread(fn).astype(enc)

    #Getting img values
    img=img.real
    img=img.astype(dtype)

    return img
项目:adascan_public    作者:amlankar    | 项目源码 | 文件源码
def flowList(xFileNames, yFileNames):
    '''
    (x/y)fileNames: List of the fileNames in order to get the flows from
    '''

    frameList = []

    if (len(xFileNames) != len(yFileNames)):
        print 'XFILE!=YFILE ERROR: In', xFileNames[0]

    for i in range(0, min(len(xFileNames), len(yFileNames))):
        imgX = io.imread(xFileNames[i])
        imgY = io.imread(yFileNames[i])
        frameList.append(np.dstack((imgX, imgY)))

    frameList = np.array(frameList)
    return frameList
项目:vizgen    作者:uva-graphics    | 项目源码 | 文件源码
def mandelbrot_color(matrix, output_file_name):
    """Generates a color version of the Mandelbrot Set

    Writes its output file to output_file_name

     Args:
        matrix: np.array, 2D array representing the mandelbrot set
        output_file_name: string, filename to write image to
    """

    # I wasn't quite sure on how to do the coloring, so I just interpolated
    # between two colors:
    color1 = np.array([[.2], [.2], [.8]])
    color2 = np.array([[1], [.2], [.5]])

    color_img = np.zeros((matrix.shape[0], matrix.shape[1], 3))

    color_img[:, :, 0] = color1[0] + matrix[:, :] * (color2[0] - color1[0])
    color_img[:, :, 1] = color1[1] + matrix[:, :] * (color2[1] - color1[1])
    color_img[:, :, 2] = color1[2] + matrix[:, :] * (color2[2] - color1[2])

    print("\nWriting image to:", output_file_name)
    skimage.io.imsave(output_file_name, color_img)
项目:vizgen    作者:uva-graphics    | 项目源码 | 文件源码
def write_img(out_img, out_filename, do_clip=True):
    """Writes out_img to out_filename
    """
    if use_4channel and len(out_img.shape) == 3 and out_img.shape[2] == 4:
        out_img = out_img[:,:,:3]

    assert out_img is not None, 'expected out_img to not be None'
    out_img = numpy.clip(out_img, 0, 1) if do_clip else out_img
    if is_pypy:
        out_img = numpy.asarray(out_img*255, 'uint8')
        if len(out_img.shape) == 2:
            mode = 'L'
        elif len(out_img.shape) == 3:
            if out_img.shape[2] == 3:
                mode = 'RGB'
            elif out_img.shape[2] == 4:
                mode = 'RGBA'
            else:
                raise ValueError('unknown color image mode')
        else:
            raise ValueError('unknown number of dimensions for image')

        I = Image.frombytes(mode, (out_img.shape[1], out_img.shape[0]), out_img.tobytes())
        I.save(out_filename)
    else:
        try:
            skimage.io.imsave(out_filename, out_img)
        except:
            print('Caught exception while saving to {}: image shape is {}, min: {}, max: {}'.format(out_filename, out_img.shape, out_img.min(), out_img.max()))
            raise
项目:deep-style-transfer    作者:albertlai    | 项目源码 | 文件源码
def load_image2(path, height=None, width=None):
    # load image
    img = skimage.io.imread(path)
    img = img / 255.0
    if height is not None and width is not None:
        ny = height
        nx = width
    elif height is not None:
        ny = height
        nx = img.shape[1] * ny / img.shape[0]
    elif width is not None:
        nx = width
        ny = img.shape[0] * nx / img.shape[1]
    else:
        ny = img.shape[0]
        nx = img.shape[1]
    return skimage.transform.resize(img, (ny, nx))
项目:ssd_tensorflow    作者:seann999    | 项目源码 | 文件源码
def load_image(path, size=224):
    # load image
    img = skimage.io.imread(path)
    img = img / 255.0
    assert (0 <= img).all() and (img <= 1.0).all()
    # print "Original Image Shape: ", img.shape
    # we crop image from center
    short_edge = min(img.shape[:2])
    yy = int((img.shape[0] - short_edge) / 2)
    xx = int((img.shape[1] - short_edge) / 2)
    crop_img = img[yy: yy + short_edge, xx: xx + short_edge]
    # resize to 224, 224
    resized_img = skimage.transform.resize(crop_img, (size, size))
    return resized_img


# returns the top1 string
项目:ssd_tensorflow    作者:seann999    | 项目源码 | 文件源码
def load_image2(path, height=None, width=None):
    # load image
    img = skimage.io.imread(path)
    img = img / 255.0
    if height is not None and width is not None:
        ny = height
        nx = width
    elif height is not None:
        ny = height
        nx = img.shape[1] * ny / img.shape[0]
    elif width is not None:
        nx = width
        ny = img.shape[0] * nx / img.shape[1]
    else:
        ny = img.shape[0]
        nx = img.shape[1]
    return skimage.transform.resize(img, (ny, nx))
项目:Texture-Synthesis    作者:mohamedkeid    | 项目源码 | 文件源码
def load_image(path):
    # Load image [height, width, depth]
    img = skimage.io.imread(path) / 255.0
    assert (0 <= img).all() and (img <= 1.0).all()

    # Crop image from center
    short_edge = min(img.shape[:2])
    yy = int((img.shape[0] - short_edge) / 2)
    xx = int((img.shape[1] - short_edge) / 2)
    shape = list(img.shape)

    crop_img = img[yy: yy + short_edge, xx: xx + short_edge]
    resized_img = skimage.transform.resize(crop_img, (shape[0], shape[1]))
    return resized_img, shape


# Return a resized numpy array of an image specified by its path
项目:Texture-Synthesis    作者:mohamedkeid    | 项目源码 | 文件源码
def load_image2(path, height=None, width=None):
    # Load image
    img = skimage.io.imread(path) / 255.0
    if height is not None and width is not None:
        ny = height
        nx = width
    elif height is not None:
        ny = height
        nx = img.shape[1] * ny / img.shape[0]
    elif width is not None:
        nx = width
        ny = img.shape[0] * nx / img.shape[1]
    else:
        ny = img.shape[0]
        nx = img.shape[1]
    return skimage.transform.resize(img, (ny, nx))


# Render the generated image given a tensorflow session and a variable image (x)
项目:nn-compression    作者:anithapk    | 项目源码 | 文件源码
def load_image2(path, height=None, width=None):
    # load image
    img = skimage.io.imread(path)
    img = img / 255.0
    if height is not None and width is not None:
        ny = height
        nx = width
    elif height is not None:
        ny = height
        nx = img.shape[1] * ny / img.shape[0]
    elif width is not None:
        nx = width
        ny = img.shape[0] * nx / img.shape[1]
    else:
        ny = img.shape[0]
        nx = img.shape[1]
    return skimage.transform.resize(img, (ny, nx))
项目:Dual-Attention-Network    作者:changywtw    | 项目源码 | 文件源码
def load_image(path):
    # load image
    img = skimage.io.imread(path)  
    img = img / 255.0 
    assert (0 <= img).all() and (img <= 1.0).all()
    # print "Original Image Shape: ", img.shape
    # we crop image from center
    short_edge = min(img.shape[:2])
    yy = int((img.shape[0] - short_edge) / 2)
    xx = int((img.shape[1] - short_edge) / 2)
    crop_img = img[yy: yy + short_edge, xx: xx + short_edge] 
    # resize to 224, 224
    resized_img = skimage.transform.resize(crop_img, (224, 224))  
    if len(resized_img.shape)<3:
        resized_img = skimage.color.gray2rgb(resized_img)  
    return resized_img


# returns the top1 string
项目:Dual-Attention-Network    作者:changywtw    | 项目源码 | 文件源码
def load_image2(path, height=None, width=None):
    # load image
    img = skimage.io.imread(path)
    img = img / 255.0
    if height is not None and width is not None:
        ny = height
        nx = width
    elif height is not None:
        ny = height
        nx = img.shape[1] * ny / img.shape[0]
    elif width is not None:
        nx = width
        ny = img.shape[0] * nx / img.shape[1]
    else:
        ny = img.shape[0]
        nx = img.shape[1]
    return skimage.transform.resize(img, (ny, nx))
项目:Style-Transfer-Algorithm    作者:mohamedkeid    | 项目源码 | 文件源码
def load_image(path):
    # Load image [height, width, depth]
    img = skimage.io.imread(path) / 255.0
    assert (0 <= img).all() and (img <= 1.0).all()

    # Crop image from center
    short_edge = min(img.shape[:2])
    yy = int((img.shape[0] - short_edge) / 2)
    xx = int((img.shape[1] - short_edge) / 2)
    shape = list(img.shape)

    crop_img = img[yy: yy + short_edge, xx: xx + short_edge]
    resized_img = skimage.transform.resize(crop_img, (shape[0], shape[1]))
    return resized_img, shape


# Return a resized numpy array of an image specified by its path
项目:Style-Transfer-Algorithm    作者:mohamedkeid    | 项目源码 | 文件源码
def load_image2(path, height=None, width=None):
    # Load image
    img = skimage.io.imread(path) / 255.0
    if height is not None and width is not None:
        ny = height
        nx = width
    elif height is not None:
        ny = height
        nx = img.shape[1] * ny / img.shape[0]
    elif width is not None:
        nx = width
        ny = img.shape[0] * nx / img.shape[1]
    else:
        ny = img.shape[0]
        nx = img.shape[1]
    return skimage.transform.resize(img, (ny, nx))


# Render the generated image given a tensorflow session and a variable image (x)
项目:text-to-image    作者:paarthneekhara    | 项目源码 | 文件源码
def load_image_array(image_file, image_size):
    img = skimage.io.imread(image_file)
    # GRAYSCALE
    if len(img.shape) == 2:
        img_new = np.ndarray( (img.shape[0], img.shape[1], 3), dtype = 'uint8')
        img_new[:,:,0] = img
        img_new[:,:,1] = img
        img_new[:,:,2] = img
        img = img_new

    img_resized = skimage.transform.resize(img, (image_size, image_size))

    # FLIP HORIZONTAL WIRH A PROBABILITY 0.5
    if random.random() > 0.5:
        img_resized = np.fliplr(img_resized)


    return img_resized.astype('float32')
项目:ISeeNN    作者:sunshaoyan    | 项目源码 | 文件源码
def load_image(path, height=None, width=None):
    img = skimage.io.imread(path)
    if len(img.shape) == 2:
        img = skimage.color.gray2rgb(img)
    img = img / 255.0
    if height is not None and width is not None:
        ny = height
        nx = width
    elif height is not None:
        ny = height
        nx = img.shape[1] * ny / img.shape[0]
    elif width is not None:
        nx = width
        ny = img.shape[0] * nx / img.shape[1]
    else:
        ny = img.shape[0]
        nx = img.shape[1]
    return skimage.transform.resize(img, (ny, nx))
项目:hdrnet_legacy    作者:mgharbi    | 项目源码 | 文件源码
def imread(path):
  return skimage.io.imread(path)
项目:hdrnet_legacy    作者:mgharbi    | 项目源码 | 文件源码
def imwrite(im, path):
  skimage.io.imsave(path, im)
项目:TAC-GAN    作者:dashayushman    | 项目源码 | 文件源码
def load_image_array(image_file, image_size,
                     image_id, data_dir='Data/datasets/mscoco/train2014',
                     mode='train'):
    img = None
    if os.path.exists(image_file):
        #print('found' + image_file)
        img = skimage.io.imread(image_file)
    else:
        print('notfound' + image_file)
        img = skimage.io.imread('http://mscoco.org/images/%d' % (image_id))
        img_path = os.path.join(data_dir, 'COCO_%s2014_%.12d.jpg' % ( mode,
                                                                      image_id))
        skimage.io.imsave(img_path, img)

    # GRAYSCALE
    if len(img.shape) == 2:
        img_new = np.ndarray( (img.shape[0], img.shape[1], 3), dtype = 'uint8')
        img_new[:,:,0] = img
        img_new[:,:,1] = img
        img_new[:,:,2] = img
        img = img_new

    img_resized = skimage.transform.resize(img, (image_size, image_size))

    # FLIP HORIZONTAL WIRH A PROBABILITY 0.5
    if random.random() > 0.5:
        img_resized = np.fliplr(img_resized)

    return img_resized.astype('float32')
项目:TAC-GAN    作者:dashayushman    | 项目源码 | 文件源码
def load_image_inception(image_file, image_size=128):
    img = skimage.io.imread(image_file)
    # GRAYSCALE
    if len(img.shape) == 2:
        img_new = np.ndarray((img.shape[0], img.shape[1], 3), dtype='uint8')
        img_new[:, :, 0] = img
        img_new[:, :, 1] = img
        img_new[:, :, 2] = img
        img = img_new

    if image_size != 0:
        img = skimage.transform.resize(img, (image_size, image_size), mode='reflect')

    return img.astype('int32')
项目:Automatic-Image-Colorization    作者:Armour    | 项目源码 | 文件源码
def test():
    img = skimage.io.imread("./test_data/starry_night.jpg")
    ny = 300
    nx = img.shape[1] * ny / img.shape[0]
    img = skimage.transform.resize(img, (ny, nx))
    skimage.io.imsave("./test_data/test/output.jpg", img)
项目:PyFRAP    作者:alexblaessle    | 项目源码 | 文件源码
def saveImg(img,fn,enc="uint16",scale=True,maxVal=None):

    """Saves image as tif file.

    ``scale`` triggers the image to be scaled to either the maximum
    range of encoding or ``maxVal``. See also :py:func:`scaleToEnc`.

    Args:
        img (numpy.ndarray): Image to save.
        fn (str): Filename.

    Keyword Args:   
        enc (str): Encoding of image.
        scale (bool): Scale image.
        maxVal (int): Maximum value to which image is scaled.

    Returns:
        str: Filename.

    """

    #Fill nan pixels with 0
    img=np.nan_to_num(img)

    #Scale img
    if scale:
        img=scaleToEnc(img,enc,maxVal=maxVal)
    else:
        #Convert to encoding
        img=img.astype(enc)



    skimage.io.imsave(fn,img)


    return fn
项目:image_captioning    作者:bityangke    | 项目源码 | 文件源码
def check_files(image_dir):
    print("Checking image files in %s" %(image_dir))
    files = os.listdir(image_dir)
    images = [os.path.join(image_dir, f) for f in files if f.lower().endswith('.jpg')]
    good_imgs = []
    for img in images:
        try:
           x = skimage.img_as_float(skimage.io.imread(img)).astype(np.float32)
           good_imgs.append(img)
        except:
           print("Image %s is corrupted and will be removed." %(img))
           os.remove(img)
    good_files = [img.split(os.sep)[-1] for img in good_imgs]
    return good_files
项目:image_captioning    作者:bityangke    | 项目源码 | 文件源码
def __init__(self, deploy=vgg_deploy, model=vgg_model, mean=vgg_mean, scale_dim=[224, 224], image_dim=[224, 224], isotropic=False):
        caffe.set_mode_gpu()
        caffe.Net.__init__(self, deploy, model, caffe.TEST)

        self.scale_dim = np.array(scale_dim)
        self.image_dim = np.array(image_dim)
        self.isotropic = isotropic

        self.transformer = caffe.io.Transformer({'data':self.blobs['data'].data.shape})
        self.transformer.set_transpose('data', (2,0,1))
        self.transformer.set_mean('data', np.load(mean).mean(1).mean(1))
        self.transformer.set_raw_scale('data', 255)
        self.transformer.set_channel_swap('data', (2,1,0))
项目:image_captioning    作者:bityangke    | 项目源码 | 文件源码
def load_image(self, image_dir):
        image = skimage.img_as_float(skimage.io.imread(image_dir)).astype(np.float32)
        assert image.ndim == 2 or image.ndim == 3
        if image.ndim == 2:
            image = image[:, :, np.newaxis]
            image = np.tile(image, (1, 1, 3))
        elif image.shape[2] > 3:
            image = image[:, :, :3]
        return image
项目:vizgen    作者:uva-graphics    | 项目源码 | 文件源码
def mandelbrot_gray(matrix, output_file_name):
    """Generates a grayscale version of the Mandelbrot Set

    Writes its output file to output_file_name

    Args:
        matrix: np.array, 2D array representing the mandelbrot set
        output_file_name: string, filename to write image to
    """

    print("\nWriting image to:", output_file_name)
    skimage.io.imsave(output_file_name, matrix)
项目:vizgen    作者:uva-graphics    | 项目源码 | 文件源码
def read_img(in_filename, grayscale=False, extra_info={}):
    """Returns the image saved at in_filename as a numpy array.

    If grayscale is True, converts from 3D RGB image to 2D grayscale image.
    """
    if is_pypy:
        ans = Image.open(in_filename)
        height = ans.height
        width = ans.width
        channels = len(ans.getbands())
        if ans.mode == 'I':
            numpy_mode = 'uint32'
            maxval = 65535.0
        elif ans.mode in ['L', 'RGB', 'RGBA']:
            numpy_mode = 'uint8'
            maxval = 255.0
        else:
            raise ValueError('unknown mode')
        ans = numpy.fromstring(ans.tobytes(), numpy_mode).reshape((height, width, channels))
        ans = ans/maxval
        if grayscale and (len(ans.shape) == 3 and ans.shape[2] == 3):
            ans = ans[:,:,0]*0.2125 + ans[:,:,1]*0.7154 + ans[:,:,2]*0.0721
        if len(ans.shape) == 3 and ans.shape[2] == 1:
            ans = ans[:,:,0]
        return ans
    else:
        ans = skimage.io.imread(in_filename)
        if ans.dtype == numpy.int32:    # Work around scikit-image bug #1680
            ans = numpy.asarray(ans, numpy.uint16)
        ans = skimage.img_as_float(ans)
        if grayscale:
            ans = skimage.color.rgb2gray(ans)
#        print('here', use_4channel, len(ans.shape) == 3, ans.shape[2] == 3)
        if use_4channel and len(ans.shape) == 3 and ans.shape[2] == 3:
            ans = numpy.dstack((ans,) + (numpy.ones((ans.shape[0], ans.shape[1], 1)),))
            extra_info['originally_3channel'] = True
    return ans
项目:vizgen    作者:uva-graphics    | 项目源码 | 文件源码
def __enter__(self):
        if not self.verbose:
            self.old_stdout = sys.stdout
            self.old_stderr = sys.stderr
            sys.stdout = self.stdout = io.StringIO()
            sys.stderr = self.stderr = io.StringIO()
项目:IM2TXT    作者:aayushP    | 项目源码 | 文件源码
def load_images(image_files, vgg, pl_images):
  dataset = np.ndarray(shape=(len(image_files), feat_len), dtype=np.float32)
  image_index = 0
  for image in image_files:
    try:
        if not tf.gfile.Exists(image):
            tf.logging.fatal('File does not exist %s', image)
        image_data = skimage.io.imread(image)
        image_data = image_data / 255.0
        batch = np.ndarray(shape=(1, image_data.shape[0], image_data.shape[1], image_data.shape[2]), dtype=np.float32)
        batch[0, :, :, :] = image_data
        feed_dict = {pl_images: batch}

        with tf.Session() as sess:
            with tf.device("/cpu:0"):
                feat = sess.run(vgg.conv5_4, feed_dict=feed_dict)

        feat.resize(feat_len,refcheck=False)
        dataset[image_index, :] = feat
        image_index += 1

    except IOError as e:
      print('Could not read:', image, ':', e, '- it\'s ok, skipping.')

  dataset = dataset[0:image_index, :]

  print('Full dataset tensor:', dataset.shape)
  return dataset
项目:deep-style-transfer    作者:albertlai    | 项目源码 | 文件源码
def load_image(path, image_h, image_w, zoom=False):
    # load image
    img = skimage.io.imread(path)
    if img.ndim < 3:
        img = skimage.color.gray2rgb(img)
    # we crop image from center
    ratio = float(image_h) / image_w
    height = int(img.shape[0])
    width = int(img.shape[1])
    yy = 0
    xx = 0
    if height > width * ratio: #too tall
        yy = int(height - width * ratio) // 2
        height = int(width * ratio)
    else: # too wide
        xx = int(width - height / ratio) // 2
        width = int(height / ratio)
    if zoom:
        yy += int(height / 6)
        xx += int(height / 6)
        height = int(height * 2/ 3)
        width = int(width * 2 / 3)
    crop_img = img[yy: yy + height, xx: xx + width]
    # resize 
    resized_img = skimage.transform.resize(crop_img, (image_h, image_w), preserve_range=True)
    centered_img = resized_img - MEAN_VALUES
    return centered_img
项目:deep-style-transfer    作者:albertlai    | 项目源码 | 文件源码
def write_image(path, image, verbose=False):
  img = image[0] + MEAN_VALUES
  if verbose:
      print("%f - %f" % (np.min(img), np.max(img)))
  img = np.clip(img, 0, 255).astype('uint8')
  skimage.io.imsave(path, img)

# returns the top1 string
项目:deep-style-transfer    作者:albertlai    | 项目源码 | 文件源码
def test():
    img = skimage.io.imread("./test_data/starry_night.jpg")
    ny = 300
    nx = img.shape[1] * ny / img.shape[0]
    img = skimage.transform.resize(img, (ny, nx))
    skimage.io.imsave("./test_data/test/output.jpg", img)
项目:Tensorflow-SegNet    作者:tkuanlun350    | 项目源码 | 文件源码
def get_all_test_data(im_list, la_list):
  images = []
  labels = []
  index = 0
  for im_filename, la_filename in zip(im_list, la_list):
    im = np.array(skimage.io.imread(im_filename), np.float32)
    im = im[np.newaxis]
    la = skimage.io.imread(la_filename)
    la = la[np.newaxis]
    la = la[...,np.newaxis]
    images.append(im)
    labels.append(la)
  return images, labels
项目:hdrnet    作者:google    | 项目源码 | 文件源码
def imread(path):
  return skimage.io.imread(path)
项目:hdrnet    作者:google    | 项目源码 | 文件源码
def imwrite(im, path):
  skimage.io.imsave(path, im)
项目:ssd_tensorflow    作者:seann999    | 项目源码 | 文件源码
def test():
    img = skimage.io.imread("./test_data/starry_night.jpg")
    ny = 300
    nx = img.shape[1] * ny / img.shape[0]
    img = skimage.transform.resize(img, (ny, nx))
    skimage.io.imsave("./test_data/test/output.jpg", img)
项目:tensorlayer-chinese    作者:shorxp    | 项目源码 | 文件源码
def load_image(path):
    # load image
    img = skimage.io.imread(path)
    img = img / 255.0
    assert (0 <= img).all() and (img <= 1.0).all()
    # print "Original Image Shape: ", img.shape
    # we crop image from center
    short_edge = min(img.shape[:2])
    yy = int((img.shape[0] - short_edge) / 2)
    xx = int((img.shape[1] - short_edge) / 2)
    crop_img = img[yy: yy + short_edge, xx: xx + short_edge]
    # resize to 299, 299
    resized_img = skimage.transform.resize(crop_img, (299, 299))
    return resized_img
项目:tensorlayer-chinese    作者:shorxp    | 项目源码 | 文件源码
def load_image(path):
    # load image
    img = skimage.io.imread(path)
    img = img / 255.0
    assert (0 <= img).all() and (img <= 1.0).all()
    # print "Original Image Shape: ", img.shape
    # we crop image from center
    short_edge = min(img.shape[:2])
    yy = int((img.shape[0] - short_edge) / 2)
    xx = int((img.shape[1] - short_edge) / 2)
    crop_img = img[yy: yy + short_edge, xx: xx + short_edge]
    # resize to 224, 224
    resized_img = skimage.transform.resize(crop_img, (224, 224))
    return resized_img
项目:tensorlayer-chinese    作者:shorxp    | 项目源码 | 文件源码
def load_image(path):
    # load image
    img = skimage.io.imread(path)
    img = img / 255.0
    assert (0 <= img).all() and (img <= 1.0).all()
    # print "Original Image Shape: ", img.shape
    # we crop image from center
    short_edge = min(img.shape[:2])
    yy = int((img.shape[0] - short_edge) / 2)
    xx = int((img.shape[1] - short_edge) / 2)
    crop_img = img[yy: yy + short_edge, xx: xx + short_edge]
    # resize to 224, 224
    resized_img = skimage.transform.resize(crop_img, (299, 299))
    return resized_img
项目:tensorlayer-chinese    作者:shorxp    | 项目源码 | 文件源码
def load_image(path):
    # load image
    img = skimage.io.imread(path)
    img = img / 255.0
    assert (0 <= img).all() and (img <= 1.0).all()
    # print "Original Image Shape: ", img.shape
    # we crop image from center
    short_edge = min(img.shape[:2])
    yy = int((img.shape[0] - short_edge) / 2)
    xx = int((img.shape[1] - short_edge) / 2)
    crop_img = img[yy: yy + short_edge, xx: xx + short_edge]
    # resize to 224, 224
    resized_img = skimage.transform.resize(crop_img, (224, 224))
    return resized_img
项目:ssta-captioning    作者:Yugnaynehc    | 项目源码 | 文件源码
def get_saliency_ft(img):

    # Saliency map calculation based on:

    if isinstance(img, str):
        img = skimage.io.imread(img)

    img_rgb = img_as_float(img)

    img_lab = skimage.color.rgb2lab(img_rgb)

    mean_val = np.mean(img_rgb, axis=(0, 1))

    kernel_h = (1.0 / 16.0) * np.array([[1, 4, 6, 4, 1]])
    kernel_w = kernel_h.transpose()

    blurred_l = scipy.signal.convolve2d(img_lab[:, :, 0], kernel_h, mode='same')
    blurred_a = scipy.signal.convolve2d(img_lab[:, :, 1], kernel_h, mode='same')
    blurred_b = scipy.signal.convolve2d(img_lab[:, :, 2], kernel_h, mode='same')

    blurred_l = scipy.signal.convolve2d(blurred_l, kernel_w, mode='same')
    blurred_a = scipy.signal.convolve2d(blurred_a, kernel_w, mode='same')
    blurred_b = scipy.signal.convolve2d(blurred_b, kernel_w, mode='same')

    im_blurred = np.dstack([blurred_l, blurred_a, blurred_b])

    sal = np.linalg.norm(mean_val - im_blurred, axis=2)
    sal_max = np.max(sal)
    sal_min = np.min(sal)
    sal = 255 * ((sal - sal_min) / (sal_max - sal_min))
    return sal
项目:TF-SegNet    作者:mathildor    | 项目源码 | 文件源码
def get_all_test_data(im_list, la_list):
    images = []
    labels = []
    index = 0
    for im_filename, la_filename in zip(im_list, la_list):
        im = np.array(skimage.io.imread(im_filename), np.float32)
        im = im[np.newaxis]
        la = skimage.io.imread(la_filename)
        la = la[np.newaxis]
        la = la[...,np.newaxis]
        images.append(im)
        labels.append(la)
    return images, labels
项目:nn-compression    作者:anithapk    | 项目源码 | 文件源码
def test():
    img = skimage.io.imread("./test_data/starry_night.jpg")
    ny = 300
    nx = img.shape[1] * ny / img.shape[0]
    img = skimage.transform.resize(img, (ny, nx))
    skimage.io.imsave("./test_data/test/output.jpg", img)
项目:FCN-TensorFlow    作者:shoaibahmed    | 项目源码 | 文件源码
def saveLastBatchResults(self, outputImages, isTrain=True):
        """Saves the results of last retrieved image batch
        Args:
          outputImages: 4D Numpy array [batchSize, H, W, numClasses]
          isTrain: If the last batch was training batch
        Returns:
          None
        """
        if isTrain:
            imageNames = [self.imageList[index] for index in self.indices]
        else:
            imageNames = [self.imageListTest[index] for index in self.indices]

        # Iterate over each image name and save the results
        for i in xrange(0, self.options.batchSize):
            imageName = imageNames[i].split('/')
            imageName = imageName[-1]
            if isTrain:
                imageName = self.options.imagesOutputDirectory + '/' + 'train_' + imageName[:-4] + '_prob' + imageName[-4:]
            else:
                imageName = self.options.imagesOutputDirectory + '/' + 'test_' + imageName[:-4] + '_prob' + imageName[-4:]
            # print(imageName)

            # Save foreground probability
            im = np.squeeze(outputImages[i, :, :, 1] * 255)
            im = im.astype(np.uint8)    # Convert image from float to unit8 for saving
            skimage.io.imsave(imageName, im)
项目:visual-question-answering-tensorflow    作者:lmelvix    | 项目源码 | 文件源码
def getImage(datapath, imageID, purpose='train'):
    name_3 = str(imageID)
    name_2 = '0' * (12-len(name_3))
    name_1 = 'COCO_' + purpose + '2014_'
    fileName = name_1 + name_2 + name_3 + '.jpg'
    filepath = join(datapath,fileName)
    img = skimage.io.imread(filepath)
    return(img)
项目:Texture_Synthesis_with_tensorflow    作者:jackie840129    | 项目源码 | 文件源码
def show_image(img):
    skimage.io.imshow(img)
    skimage.io.show()

# [height, width, depth]
项目:Texture_Synthesis_with_tensorflow    作者:jackie840129    | 项目源码 | 文件源码
def load_image(path):
    # load image
    img = skimage.io.imread(path)
    img = img / 255.0
    assert (0 <= img).all() and (img <= 1.0).all()
    print( "Original Image Shape: ", img.shape)
    # we crop image from center
    short_edge = min(img.shape[:2])
    yy = int((img.shape[0] - short_edge) / 2)
    xx = int((img.shape[1] - short_edge) / 2)
    crop_img = img[yy: yy + short_edge, xx: xx + short_edge]
    # resize to 224, 224
    resized_img = skimage.transform.resize(crop_img, (256, 256))
    print( "Resize Image Shape: ", resized_img.shape)
    return resized_img