我们从Python开源项目中,提取了以下9个代码示例,用于说明如何使用sklearn.externals.joblib.Memory()。
def __init__(self, mask=None, smoothing_fwhm=None, standardize=True, detrend=True, low_pass=None, high_pass=None, t_r=None, target_affine=None, target_shape=None, mask_strategy='epi', mask_args=None, memory=Memory(cachedir=None), memory_level=2, n_jobs=1, verbose=0, ): self.mask = mask self.smoothing_fwhm = smoothing_fwhm self.standardize = standardize self.detrend = detrend self.low_pass = low_pass self.high_pass = high_pass self.t_r = t_r self.target_affine = target_affine self.target_shape = target_shape self.mask_strategy = mask_strategy self.mask_args = mask_args self.memory = memory self.memory_level = memory_level self.n_jobs = n_jobs self.verbose = verbose
def __init__(self, n_components=20, alpha=0.1, dict_init=None, transform_batch_size=None, mask=None, smoothing_fwhm=None, standardize=True, detrend=True, low_pass=None, high_pass=None, t_r=None, target_affine=None, target_shape=None, mask_strategy='background', mask_args=None, memory=Memory(cachedir=None), memory_level=2, n_jobs=1, verbose=0, ): BaseNilearnEstimator.__init__(self, mask=mask, smoothing_fwhm=smoothing_fwhm, standardize=standardize, detrend=detrend, low_pass=low_pass, high_pass=high_pass, t_r=t_r, target_affine=target_affine, target_shape=target_shape, mask_strategy=mask_strategy, mask_args=mask_args, memory=memory, memory_level=memory_level, n_jobs=n_jobs, verbose=verbose) self.n_components = n_components self.transform_batch_size = transform_batch_size self.dict_init = dict_init self.alpha = alpha
def __init__(self, dictionary, alpha=0.1, transform_batch_size=None, mask=None, smoothing_fwhm=None, standardize=False, detrend=False, low_pass=None, high_pass=None, t_r=None, target_affine=None, target_shape=None, mask_strategy='background', mask_args=None, memory=Memory(cachedir=None), memory_level=2, n_jobs=1, verbose=0, ): self.dictionary = dictionary fMRICoderMixin.__init__(self, n_components=None, alpha=alpha, dict_init=self.dictionary, mask=mask, smoothing_fwhm=smoothing_fwhm, standardize=standardize, detrend=detrend, low_pass=low_pass, high_pass=high_pass, transform_batch_size=transform_batch_size, t_r=t_r, target_affine=target_affine, target_shape=target_shape, mask_strategy=mask_strategy, mask_args=mask_args, memory=memory, memory_level=memory_level, n_jobs=n_jobs, verbose=verbose)
def test_dict_fact(method, memory): if memory: memory = Memory(cachedir=get_cache_dirs()[0]) memory_level = 2 else: if method != 'masked': pytest.skip() memory = Memory(cachedir=None) memory_level = 0 data, mask_img, components, init = _make_test_data(n_subjects=10) dict_fact = fMRIDictFact(n_components=4, random_state=0, memory=memory, memory_level=memory_level, mask=mask_img, dict_init=init, method=method, reduction=2, smoothing_fwhm=0., n_epochs=2, alpha=1) dict_fact.fit(data) maps = np.rollaxis(dict_fact.components_img_.get_data(), 3, 0) components = np.rollaxis(components.get_data(), 3, 0) maps = maps.reshape((maps.shape[0], -1)) components = components.reshape((components.shape[0], -1)) S = np.sqrt(np.sum(components ** 2, axis=1)) S[S == 0] = 1 components /= S[:, np.newaxis] S = np.sqrt(np.sum(maps ** 2, axis=1)) S[S == 0] = 1 maps /= S[:, np.newaxis] G = np.abs(components.dot(maps.T)) recovered_maps = np.sum(G > 0.95) assert (recovered_maps >= 4)
def load_image(source, scale=1, gray=False, memory=Memory(cachedir=None)): data_dir = get_data_dirs()[0] if source == 'face': image = face(gray=gray) image = image.astype(np.float32) / 255 if image.ndim == 2: image = image[..., np.newaxis] if scale != 1: image = memory.cache(rescale)(image, scale=scale) return image elif source == 'lisboa': image = imread(join(data_dir, 'images', 'lisboa.jpg'), as_grey=gray) image = image.astype(np.float32) / 255 if image.ndim == 2: image = image[..., np.newaxis] if scale != 1: image = memory.cache(rescale)(image, scale=scale) return image elif source == 'aviris': image = open_image( join(data_dir, 'aviris', 'f100826t01p00r05rdn_b/' 'f100826t01p00r05rdn_b_sc01_ort_img.hdr')) image = np.array(image.open_memmap(), dtype=np.float32) good_bands = list(range(image.shape[2])) good_bands.remove(110) image = image[:, :, good_bands] indices = image == -50 image[indices] = -1 image[~indices] -= np.min(image[~indices]) image[~indices] /= np.max(image[~indices]) return image else: raise ValueError('Data source is not known')
def get_lookalike_people(): m = Memory(cachedir='./cache_data', compress=6, verbose=0) load_func = m.cache(_get_lookalike_people) #faces, targets, target_ids = _get_lookalike_people() faces, targets, target_ids = load_func() return Bunch( data=faces.reshape(len(faces), -1), images=faces, target=target_ids, target_names=targets, DESCR="Look Alike People Dataset")
def _fit(self, X, y=None, **fit_params): self._validate_steps() # Setup the memory memory = self.memory if memory is None: memory = Memory(cachedir=None, verbose=0) elif isinstance(memory, six.string_types): memory = Memory(cachedir=memory, verbose=0) elif not isinstance(memory, Memory): raise ValueError("'memory' should either be a string or" " a joblib.Memory instance, got" " 'memory={!r}' instead.".format(memory)) fit_transform_one_cached = memory.cache(_fit_transform_one) fit_params_steps = dict((name, {}) for name, step in self.steps if step is not None) for pname, pval in six.iteritems(fit_params): step, param = pname.split('__', 1) fit_params_steps[step][param] = pval Xt = X for step_idx, (name, transformer) in enumerate(self.steps[:-1]): #if self._do_this_step(step_idx): Xt, y = self._astype(transformer, Xt, y=y) print('Types', step_idx, [type(_) for _ in (Xt, y)]) if transformer is None: pass else: if memory.cachedir is None: # we do not clone when caching is disabled to preserve # backward compatibility cloned_transformer = transformer else: cloned_transformer = clone(transformer) # Fit or load from cache the current transfomer Xt, fitted_transformer = fit_transform_one_cached( cloned_transformer, None, Xt, y, **fit_params_steps[name]) # Replace the transformer of the step with the fitted # transformer. This is necessary when loading the transformer # from the cache. self.steps[step_idx] = (name, fitted_transformer) if self._final_estimator is None: return Xt, {} fit_params = fit_params_steps[self.steps[-1][0]] return Xt, y, fit_params
def __init__(self, method='masked', step_size=1, n_components=20, n_epochs=1, alpha=0.1, dict_init=None, random_state=None, batch_size=20, reduction=1, learning_rate=1, positive=False, transform_batch_size=None, mask=None, smoothing_fwhm=None, standardize=True, detrend=True, low_pass=None, high_pass=None, t_r=None, target_affine=None, target_shape=None, mask_strategy='background', mask_args=None, memory=Memory(cachedir=None), memory_level=0, n_jobs=1, verbose=0, callback=None): fMRICoderMixin.__init__(self, n_components=n_components, alpha=alpha, dict_init=dict_init, mask=mask, transform_batch_size=transform_batch_size, smoothing_fwhm=smoothing_fwhm, standardize=standardize, detrend=detrend, low_pass=low_pass, high_pass=high_pass, t_r=t_r, target_affine=target_affine, target_shape=target_shape, mask_strategy=mask_strategy, mask_args=mask_args, memory=memory, memory_level=memory_level, n_jobs=n_jobs, verbose=verbose) self.n_epochs = n_epochs self.batch_size = batch_size self.reduction = reduction self.method = method self.step_size = step_size self.positive = positive self.learning_rate = learning_rate self.random_state = random_state self.callback = callback
def check_parameters_default_constructible(name, Estimator): classifier = LinearDiscriminantAnalysis() # test default-constructibility # get rid of deprecation warnings with warnings.catch_warnings(record=True): if name in META_ESTIMATORS: estimator = Estimator(classifier) else: estimator = Estimator() # test cloning clone(estimator) # test __repr__ repr(estimator) # test that set_params returns self assert_true(estimator.set_params() is estimator) # test if init does nothing but set parameters # this is important for grid_search etc. # We get the default parameters from init and then # compare these against the actual values of the attributes. # this comes from getattr. Gets rid of deprecation decorator. init = getattr(estimator.__init__, 'deprecated_original', estimator.__init__) try: def param_filter(p): """Identify hyper parameters of an estimator""" return (p.name != 'self' and p.kind != p.VAR_KEYWORD and p.kind != p.VAR_POSITIONAL) init_params = [p for p in signature(init).parameters.values() if param_filter(p)] except (TypeError, ValueError): # init is not a python function. # true for mixins return params = estimator.get_params() if name in META_ESTIMATORS: # they can need a non-default argument init_params = init_params[1:] for init_param in init_params: assert_not_equal(init_param.default, init_param.empty, "parameter %s for %s has no default value" % (init_param.name, type(estimator).__name__)) assert_in(type(init_param.default), [str, int, float, bool, tuple, type(None), np.float64, types.FunctionType, Memory]) if init_param.name not in params.keys(): # deprecated parameter, not in get_params assert_true(init_param.default is None) continue param_value = params[init_param.name] if isinstance(param_value, np.ndarray): assert_array_equal(param_value, init_param.default) else: assert_equal(param_value, init_param.default)