Python sklearn.metrics 模块,mean_absolute_error() 实例源码

我们从Python开源项目中,提取了以下49个代码示例,用于说明如何使用sklearn.metrics.mean_absolute_error()

项目:healthcareai-py    作者:HealthCatalyst    | 项目源码 | 文件源码
def calculate_regression_metrics(trained_sklearn_estimator, x_test, y_test):
    """
    Given a trained estimator, calculate metrics.

    Args:
        trained_sklearn_estimator (sklearn.base.BaseEstimator): a scikit-learn estimator that has been `.fit()`
        y_test (numpy.ndarray): A 1d numpy array of the y_test set (predictions)
        x_test (numpy.ndarray): A 2d numpy array of the x_test set (features)

    Returns:
        dict: A dictionary of metrics objects
    """
    # Get predictions
    predictions = trained_sklearn_estimator.predict(x_test)

    # Calculate individual metrics
    mean_squared_error = skmetrics.mean_squared_error(y_test, predictions)
    mean_absolute_error = skmetrics.mean_absolute_error(y_test, predictions)

    result = {'mean_squared_error': mean_squared_error, 'mean_absolute_error': mean_absolute_error}

    return result
项目:OpenAPS    作者:medicinexlab    | 项目源码 | 文件源码
def _plot_old_pred_data(old_pred_data, show_pred_plot, save_pred_plot, show_clarke_plot, save_clarke_plot, id_str, algorithm_str, minutes_str):
    actual_bg_array = old_pred_data.result_actual_bg_array
    actual_bg_time_array = old_pred_data.result_actual_bg_time_array
    pred_array = old_pred_data.result_pred_array
    pred_time_array = old_pred_data.result_pred_time_array

    #Root mean squared error
    rms = math.sqrt(metrics.mean_squared_error(actual_bg_array, pred_array))
    print "                Root Mean Squared Error: " + str(rms)
    print "                Mean Absolute Error: " + str(metrics.mean_absolute_error(actual_bg_array, pred_array))
    print "                R^2 Coefficient of Determination: " + str(metrics.r2_score(actual_bg_array, pred_array))

    plot, zone = ClarkeErrorGrid.clarke_error_grid(actual_bg_array, pred_array, id_str + " " + algorithm_str + " " + minutes_str)
    print "                Percent A:{}".format(float(zone[0]) / (zone[0] + zone[1] + zone[2] + zone[3] + zone[4]))
    print "                Percent C, D, E:{}".format(float(zone[2] + zone[3] + zone[4])/ (zone[0] + zone[1] + zone[2] + zone[3] + zone[4]))
    print "                Zones are A:{}, B:{}, C:{}, D:{}, E:{}\n".format(zone[0],zone[1],zone[2],zone[3],zone[4])
    if save_clarke_plot: plt.savefig(id_str + algorithm_str.replace(" ", "") + minutes_str + "clarke.png")
    if show_clarke_plot: plot.show()

    plt.clf()
    plt.plot(actual_bg_time_array, actual_bg_array, label="Actual BG", color='black', linestyle='-')
    plt.plot(pred_time_array, pred_array, label="BG Prediction", color='black', linestyle=':')
    plt.title(id_str + " " + algorithm_str + " " + minutes_str + " BG Analysis")
    plt.ylabel("Blood Glucose Level (mg/dl)")
    plt.xlabel("Time (minutes)")
    plt.legend(loc='upper left')

    # SHOW/SAVE PLOT DEPENDING ON THE BOOLEAN PARAMETER
    if save_pred_plot: plt.savefig(id_str + algorithm_str.replace(" ","") + minutes_str + "plot.png")
    if show_pred_plot: plt.show()


#Function to analyze the old OpenAPS data
项目:snape    作者:mbernico    | 项目源码 | 文件源码
def score_regression(y, y_hat, report=True):
    """
    Create regression score
    :param y:
    :param y_hat:
    :return:
    """
    r2 = r2_score(y, y_hat)
    rmse = sqrt(mean_squared_error(y, y_hat))
    mae = mean_absolute_error(y, y_hat)

    report_string = "---Regression Score--- \n"
    report_string += "R2 = " + str(r2) + "\n"
    report_string += "RMSE = " + str(rmse) + "\n"
    report_string += "MAE = " + str(mae) + "\n"

    if report:
        print(report_string)

    return mae, report_string
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def gs_Ridge(xM, yV, alphas_log=(1, -1, 9), n_folds=5, n_jobs=-1, scoring='r2'):
    """
    Parameters
    -------------
    scoring: mean_absolute_error, mean_squared_error, median_absolute_error, r2
    """
    print('If scoring is not r2 but error metric, output score is revered for scoring!')
    print(xM.shape, yV.shape)

    clf = linear_model.Ridge()
    #parmas = {'alpha': np.logspace(1, -1, 9)}
    parmas = {'alpha': np.logspace(*alphas_log)}
    kf_n_c = model_selection.KFold(n_splits=n_folds, shuffle=True)
    kf_n = kf_n_c.split(xM)
    gs = model_selection.GridSearchCV(
        clf, parmas, scoring=scoring, cv=kf_n, n_jobs=n_jobs)

    gs.fit(xM, yV)

    return gs
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def gs_Ridge( xM, yV, alphas_log = (1, -1, 9), n_folds = 5, n_jobs = -1, scoring = 'r2'):
    """
    Parameters
    -------------
    scoring: mean_absolute_error, mean_squared_error, median_absolute_error, r2
    """
    print(xM.shape, yV.shape)

    clf = linear_model.Ridge()
    #parmas = {'alpha': np.logspace(1, -1, 9)}
    parmas = {'alpha': np.logspace( *alphas_log)}
    kf_n = cross_validation.KFold( xM.shape[0], n_folds=n_folds, shuffle=True)
    gs = grid_search.GridSearchCV( clf, parmas, scoring = scoring, cv = kf_n, n_jobs = n_jobs)

    gs.fit( xM, yV)

    return gs
项目:Parallel-SGD    作者:angadgill    | 项目源码 | 文件源码
def test_multioutput_regression():
    y_true = np.array([[1, 0, 0, 1], [0, 1, 1, 1], [1, 1, 0, 1]])
    y_pred = np.array([[0, 0, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]])

    error = mean_squared_error(y_true, y_pred)
    assert_almost_equal(error, (1. / 3 + 2. / 3 + 2. / 3) / 4.)

    # mean_absolute_error and mean_squared_error are equal because
    # it is a binary problem.
    error = mean_absolute_error(y_true, y_pred)
    assert_almost_equal(error, (1. / 3 + 2. / 3 + 2. / 3) / 4.)

    error = r2_score(y_true, y_pred, multioutput='variance_weighted')
    assert_almost_equal(error, 1. - 5. / 2)
    error = r2_score(y_true, y_pred, multioutput='uniform_average')
    assert_almost_equal(error, -.875)
项目:AutoML5    作者:djajetic    | 项目源码 | 文件源码
def a_score_(solution, prediction):
    mad = float(mvmean(abs(solution-mvmean(solution)))) 
    return 1 - metrics.mean_absolute_error(solution, prediction)/mad
项目:hyperband    作者:zygmuntz    | 项目源码 | 文件源码
def train_and_eval_sklearn_regressor( clf, data ):

    x_train = data['x_train']
    y_train = data['y_train']

    x_test = data['x_test']
    y_test = data['y_test'] 

    clf.fit( x_train, y_train ) 
    p = clf.predict( x_train )

    mse = MSE( y_train, p )
    rmse = sqrt( mse )
    mae = MAE( y_train, p )


    print "\n# training | RMSE: {:.4f}, MAE: {:.4f}".format( rmse, mae )

    #

    p = clf.predict( x_test )

    mse = MSE( y_test, p )
    rmse = sqrt( mse )
    mae = MAE( y_test, p )

    print "# testing  | RMSE: {:.4f}, MAE: {:.4f}".format( rmse, mae )  

    return { 'loss': rmse, 'rmse': rmse, 'mae': mae }
项目:Neural-Networks-for-Inverse-Kinematics    作者:paramrajpura    | 项目源码 | 文件源码
def base_model():
     model = Sequential()
     model.add(Dense(32, input_dim=7, init='normal', activation='relu'))
     model.add(Dense(64, init='normal', activation='relu'))
     model.add(Dense(128, init='normal', activation='relu'))
     model.add(Dense(32, init='normal', activation='relu'))
     model.add(Dense(6, init='normal'))
     model.compile(loss='mean_absolute_error', optimizer = 'adam')
     return model
项目:mimic3-benchmarks    作者:YerevaNN    | 项目源码 | 文件源码
def print_metrics_regression(y_true, predictions, verbose=1):
    predictions = np.array(predictions)
    predictions = np.maximum(predictions, 0).flatten()
    y_true = np.array(y_true)

    y_true_bins = [get_bin_custom(x, CustomBins.nbins) for x in y_true]
    prediction_bins = [get_bin_custom(x, CustomBins.nbins) for x in predictions]
    cf = metrics.confusion_matrix(y_true_bins, prediction_bins)
    if verbose:
        print "Custom bins confusion matrix:"
        print cf

    kappa = metrics.cohen_kappa_score(y_true_bins, prediction_bins,
                                      weights='linear')
    mad = metrics.mean_absolute_error(y_true, predictions)
    mse = metrics.mean_squared_error(y_true, predictions)
    mape = mean_absolute_percentage_error(y_true, predictions)

    if verbose:
        print "Mean absolute deviation (MAD) =", mad
        print "Mean squared error (MSE) =", mse
        print "Mean absolute percentage error (MAPE) =", mape
        print "Cohen kappa score =", kappa

    return {"mad": mad,
            "mse": mse,
            "mape": mape,
            "kappa": kappa}
项目:sanergy-public    作者:dssg    | 项目源码 | 文件源码
def evaluate_waste(self, yhat, y):
        """
        Given predicted yhat, evaluate it against observed y, using the loss function.

        Args:
            yhat, y (array(float)): The predicted, respectively observed values.

        Returns:
            loss: Evaluated loss as a float.
        """
        if (isinstance(yhat, pd.DataFrame) and isinstance(y, pd.DataFrame)):
            #print(yhat.shape)
            #yhat.to_csv("yhat.csv")
            #y.to_csv("y.csv")
            yhat, y = self.extract_vectors(yhat, y)
            #print(len(yhat))
        if self.loss_waste == "L2":
            evaluated_loss = skm.mean_squared_error(y,yhat)
            #evaluated_loss =(1.0/len(yhat))*np.linalg.norm(yhat - y, ord = 2)

        elif self.loss_waste == "L1":
            #evaluated_loss = (1.0/len(yhat))*np.linalg.norm(np.asarray(yhat)-np.asarray(y), ord=1)
            evaluated_loss = skm.mean_absolute_error(y,yhat)
        else:
            evaluated_loss = skm.mean_squared_error(y,yhat)
            #evaluated_loss =  (1.0/len(yhat))*np.linalg.norm(np.asarray(yhat)-np.asarray(y), ord=2) #L2

        return(evaluated_loss)
项目:AutoML4    作者:djajetic    | 项目源码 | 文件源码
def a_score_(solution, prediction):
    mad = float(mvmean(abs(solution-mvmean(solution)))) 
    return 1 - metrics.mean_absolute_error(solution, prediction)/mad
项目:rdocChallenge    作者:Elyne    | 项目源码 | 文件源码
def getScores(labels_true, labels_pred):
    str2 = "Average Precision: "+ str(precision_score(labels_true, labels_pred, average='weighted'))+'\n'
    str2 += "Average Recall: "+ str( recall_score(labels_true, labels_pred, average='weighted'))+'\n'
    str2 += "Average F1-measure: "+ str( f1_score(labels_true, labels_pred, average='weighted'))+'\n'
    str2 += "Accuracy score: "+ str( accuracy_score(labels_true, labels_pred))+'\n'

    str2 += "Mean absolute error (sklearn) on the test set is:"+ str( mean_absolute_error(labels_true, labels_pred))+'\n'
    str2 += "Average Mean absolute error, and per class (official): "+ str(mae(labels_true, labels_pred))+'\n'
    str2 += "Average Mean absolute error (official): " + str(mae(labels_true, labels_pred)[1])+'\n'



    print(str2)
    return str2
项目:automl_gpu    作者:abhishekkrthakur    | 项目源码 | 文件源码
def a_score_(solution, prediction):
    mad = float(mvmean(abs(solution-mvmean(solution)))) 
    return 1 - metrics.mean_absolute_error(solution, prediction)/mad
项目:HCNN    作者:lixin4ever    | 项目源码 | 文件源码
def MAE(gold, pred):
    assert gold.shape == pred.shape
    return mean_absolute_error(gold, pred)
项目:deep_portfolio    作者:deependersingla    | 项目源码 | 文件源码
def forecast_one(model, train, valid, test,
                 train_scale, valid_scale, test_scale):
    # Make 1-step forecasts
    trained = model.predict(train[0])
    validated = model.predict(valid[0])
    predicted = model.predict(test[0])

    trained = np.array(trained).flatten()
    validated = np.array(validated).flatten()
    predicted = np.array(predicted).flatten()

    # rescale forecasts and target data (scale[0] is mean, scale[1] is std_dev)
    trained = trained * train_scale[1] + train_scale[0]
    validated = validated * valid_scale[1] + valid_scale[0]
    predicted = predicted * test_scale[1] + test_scale[0]

    trainY = train[1].flatten() * train_scale[1] + train_scale[0]
    validY = valid[1].flatten() * valid_scale[1] + valid_scale[0]
    testY = test[1].flatten() * test_scale[1] + test_scale[0]

    # calculate errors
    mse1 = mean_absolute_error(trainY, trained)
    mse2 = mean_absolute_error(validY, validated)
    mse3 = mean_absolute_error(testY, predicted)
    print("Mean Absolue Error (MAE) train: %f" % mse1)
    print("Mean Absolue Error (MAE) valid: %f" % mse2)
    print("Mean Absolue Error (MAE) test:  %f" % mse3)
    return predicted, testY, (mse1, mse2, mse3)
项目:forward    作者:yajun0601    | 项目源码 | 文件源码
def regression(filename):
    from sklearn.cross_validation import train_test_split
    print(filename)
    X,y = loadDataSet(filename)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
    from sklearn.linear_model import LinearRegression
    from sklearn import metrics
    linreg = LinearRegression()
    linreg.fit(X_train, y_train)

#    print(linreg.intercept_, linreg.coef_)
    # pair the feature names with the coefficients
    feature_cols = ['????', '????', '??????','?????','??????','???????','???????','?????????','??????']
    #print(feature_cols, linreg.coef_)
    #zip(feature_cols, linreg.coef_)
    y_pred = linreg.predict(X_test)

    print("MAE:",metrics.mean_absolute_error(y_test, y_pred))
    print("MSE:",metrics.mean_squared_error(y_test, y_pred))
    print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
    scores = cross_val_score(linreg, X, y,cv=5)
#    print(filename)
    print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))

    res = pd.DataFrame(linreg.coef_,columns=feature_cols,index=[filename])
    return (res)

#files = ['?????3?.xlsx','?????4?.xlsx','?????5?.xlsx','?????6?.xlsx']
项目:forward    作者:yajun0601    | 项目源码 | 文件源码
def regression(filename):
    from sklearn.linear_model import LinearRegression
    from sklearn import metrics

    X,y = loadDataSet(filename)
    print(filename,X.shape)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1, test_size=0.25)
    linreg = LinearRegression()
    linreg.fit(X_train, y_train)

#    print(linreg.intercept_, linreg.coef_)
    # pair the feature names with the coefficients
    feature_cols = ['????', '????', '??????','?????','??????','???????','???????','?????????','??????']
#    feature_cols = ['????', '??????','?????','??????','???????','???????','?????????','??????']

    #print(feature_cols, linreg.coef_)
    #zip(feature_cols, linreg.coef_)
    y_pred = linreg.predict(X_test)

    print("MAE:",metrics.mean_absolute_error(y_test, y_pred))
    print("MSE:",metrics.mean_squared_error(y_test, y_pred))
    print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
    scores = cross_val_score(linreg, X, y,cv=3)
    print('scores:',scores)  
    print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))

    res = pd.DataFrame(linreg.coef_.T[:len(feature_cols)].T,columns=feature_cols,index=[filename.split('.')[0]])
#    res = pd.DataFrame(linreg.coef_,index=[filename.split('.')[0]])
    return (res)

#files = ['201603.xlsx','201604.xlsx','201605.xlsx','?????3?.xlsx','?????4?.xlsx','?????5?.xlsx','?????6?.xlsx']
#files = ['?????3?.xlsx','?????4?.xlsx','?????5?.xlsx','?????6?.xlsx','201703_06.xlsx']
#files = ['201703_06.xlsx']
项目:heamy    作者:rushter    | 项目源码 | 文件源码
def test_optimizer():
    opt = Optimizer([model, model_2], scorer=mean_absolute_error)
    output = opt.minimize('SLSQP')
    assert output.shape[0] == 2
    assert_almost_equal(output.sum(), 1.0, decimal=5)
项目:heamy    作者:rushter    | 项目源码 | 文件源码
def test_report_score():
    report_score(np.array([1, 2, 3]), mean_absolute_error)
    report_score(np.array([1, 2, 3]), None)
项目:heamy    作者:rushter    | 项目源码 | 文件源码
def test_apply():
    output = pipeline.apply(lambda x: np.mean(x, axis=0)).execute()
    assert output.shape[0] == dataset.X_test.shape[0]

    output = pipeline.apply(lambda x: np.mean(x, axis=0)).validate(scorer=mean_absolute_error, k=10)
    assert len(output) == 10
项目:course-1    作者:thoughtfulml    | 项目源码 | 文件源码
def error_rate(self, folds):
    holdout = 1 / float(folds)
    errors = []
    for fold in range(folds):
      y_hat, y_true = self.__validation_data(holdout)
      # TODO: Take a look at sklearn.metrics to see if any other metric you might want to look at
      errors.append(mean_absolute_error(y_true, y_hat))

    return errors
项目:Machine_Learning_Playground    作者:yao23    | 项目源码 | 文件源码
def get_mae(pred, actual):
    # only compute on non-zero terms
    pred = pred[actual.nonzero()].flatten()
    actual = actual[actual.nonzero()].flatten()
    return mean_absolute_error(pred, actual)
项目:kaggler-template    作者:jeongyoonlee    | 项目源码 | 文件源码
def eval_mae(preds, dtrain):
    labels = dtrain.get_label()
    return 'mae', MAE(np.exp(labels), np.exp(preds))
项目:kaggler-template    作者:jeongyoonlee    | 项目源码 | 文件源码
def eval_mae(preds, dataset):
    labels = dataset.get_label()
    return 'mae', MAE(np.exp(labels), np.exp(preds)), False
项目:Kaggle_Allstate    作者:sadz2201    | 项目源码 | 文件源码
def mae_loss_func(weights):
    ''' scipy minimize will pass the weights as a numpy array '''
    final_prediction = 0
    for weight, prediction in zip(weights, predictions):
            final_prediction += prediction * weight
    return mean_absolute_error(actual.loss, final_prediction)
项目:Kaggle_Allstate    作者:sadz2201    | 项目源码 | 文件源码
def xg_eval_mae(yhat, dtrain):
    y = dtrain.get_label()
    return 'mae', mean_absolute_error(np.exp(y)-shift,
                                      np.exp(yhat)-shift)
项目:real_estate    作者:cooperoelrichs    | 项目源码 | 文件源码
def mean_absolute_error(self):
        return mean_absolute_error(y_true=self.y, y_pred=self.predict(self.X))
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def estimate_accuracy(yEv, yEv_calc, disp = False):
    """
    It was originally located in jchem. However now it is allocated here
    since the functionality is more inline with jutil than jchem. 
    """

    r_sqr = metrics.r2_score( yEv, yEv_calc)
    RMSE = np.sqrt( metrics.mean_squared_error( yEv, yEv_calc))
    MAE = metrics.mean_absolute_error( yEv, yEv_calc)
    DAE = metrics.median_absolute_error( yEv, yEv_calc)

    if disp:
        print("r^2={0:.2e}, RMSE={1:.2e}, MAE={2:.2e}, DAE={3:.2e}".format( r_sqr, RMSE, MAE, DAE))

    return r_sqr, RMSE, MAE, DAE
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def cv_LinearRegression( xM, yV, n_splits = 5, scoring = 'median_absolute_error', disp = False):
    """
    metrics.explained_variance_score(y_true, y_pred)    Explained variance regression score function
    metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
    metrics.mean_squared_error(y_true, y_pred[, ...])   Mean squared error regression loss
    metrics.median_absolute_error(y_true, y_pred)   Median absolute error regression loss
    metrics.r2_score(y_true, y_pred[, ...]) R^2 (coefficient of determination) regression score function.
    """  

    if disp:
        print(xM.shape, yV.shape)

    clf = linear_model.LinearRegression()
    kf5_c = model_selection.KFold( n_splits=n_splits, shuffle=True)
    kf5 = kf5_c.split( xM)  
    cv_score_l = list()
    for train, test in kf5:
        # clf.fit( xM[train,:], yV[train,:])
        # yV is vector but not a metrix here. Hence, it should be treated as a vector
        clf.fit( xM[train,:], yV[train])

        yVp_test = clf.predict( xM[test,:])
        if scoring == 'median_absolute_error':
            cv_score_l.append( metrics.median_absolute_error(yV[test], yVp_test))
        else:
            raise ValueError( "{} scoring is not supported.".format( scoring))

    if disp: # Now only this flag is on, the output will be displayed. 
        print('{}: mean, std -->'.format( scoring), np.mean( cv_score_l), np.std( cv_score_l))

    return cv_score_l
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def cv_LinearRegression_ci_pred( xM, yV, n_splits = 5, scoring = 'median_absolute_error', disp = False):
    """
    metrics.explained_variance_score(y_true, y_pred)    Explained variance regression score function
    metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
    metrics.mean_squared_error(y_true, y_pred[, ...])   Mean squared error regression loss
    metrics.median_absolute_error(y_true, y_pred)   Median absolute error regression loss
    metrics.r2_score(y_true, y_pred[, ...]) R^2 (coefficient of determination) regression score function.
    """  

    if disp:
        print(xM.shape, yV.shape)

    clf = linear_model.LinearRegression()
    kf5_c = model_selection.KFold( n_splits=n_splits, shuffle=True)
    kf5 = kf5_c.split( xM)  
    cv_score_l = list()
    ci_l = list()
    yVp = yV.copy() 
    for train, test in kf5:
        # clf.fit( xM[train,:], yV[train,:])
        # yV is vector but not a metrix here. Hence, it should be treated as a vector
        clf.fit( xM[train,:], yV[train])

        yVp_test = clf.predict( xM[test,:])
        yVp[test] = yVp_test

        # Additionally, coef_ and intercept_ are stored. 
        coef = np.array(clf.coef_).tolist()
        intercept = np.array(clf.intercept_).tolist()
        ci_l.append( (clf.coef_, clf.intercept_))
        if scoring == 'median_absolute_error':
            cv_score_l.append( metrics.median_absolute_error(yV[test], yVp_test))
        else:
            raise ValueError( "{} scoring is not supported.".format( scoring))

    if disp: # Now only this flag is on, the output will be displayed. 
        print('{}: mean, std -->'.format( scoring), np.mean( cv_score_l), np.std( cv_score_l))

    return cv_score_l, ci_l, yVp.A1.tolist()
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def cv_LinearRegression_ci_pred_full_Ridge( xM, yV, alpha, n_splits = 5, shuffle=True, disp = False):
    """
    Note - scoring is not used. I may used later. Not it is remained for compatibility purpose.
    metrics.explained_variance_score(y_true, y_pred)    Explained variance regression score function
    metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
    metrics.mean_squared_error(y_true, y_pred[, ...])   Mean squared error regression loss
    metrics.median_absolute_error(y_true, y_pred)   Median absolute error regression loss
    metrics.r2_score(y_true, y_pred[, ...]) R^2 (coefficient of determination) regression score function.
    """  

    if disp:
        print(xM.shape, yV.shape)

    # print( 'alpha of Ridge is', alpha)
    clf = linear_model.Ridge( alpha)
    kf5_c = model_selection.KFold( n_splits=n_splits, shuffle=shuffle)
    kf5 = kf5_c.split( xM)

    cv_score_l = list()
    ci_l = list()
    yVp = yV.copy() 
    for train, test in kf5:
        # clf.fit( xM[train,:], yV[train,:])
        # yV is vector but not a metrix here. Hence, it should be treated as a vector
        clf.fit( xM[train,:], yV[train])

        yVp_test = clf.predict( xM[test,:])
        yVp[test] = yVp_test

        # Additionally, coef_ and intercept_ are stored.        
        ci_l.append( (clf.coef_, clf.intercept_))
        y_a = np.array( yV[test])[:,0]
        yp_a = np.array( yVp_test)[:,0]
        cv_score_l.extend( np.abs(y_a - yp_a).tolist())

    return cv_score_l, ci_l, yVp.A1.tolist()
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def estimate_accuracy4(yEv, yEv_calc, disp = False):
    """
    It was originally located in jchem. However now it is allocated here
    since the functionality is more inline with jutil than jchem. 
    """

    r_sqr = metrics.r2_score( yEv, yEv_calc)
    RMSE = np.sqrt( metrics.mean_squared_error( yEv, yEv_calc))
    MAE = metrics.mean_absolute_error( yEv, yEv_calc)
    DAE = metrics.median_absolute_error( yEv, yEv_calc)

    if disp:
        print("r^2={0:.2e}, RMSE={1:.2e}, MAE={2:.2e}, DAE={3:.2e}".format( r_sqr, RMSE, MAE, DAE))

    return r_sqr, RMSE, MAE, DAE
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def cv_LinearRegression( xM, yV, n_splits = 5, scoring = 'median_absolute_error', disp = False):
    """
    metrics.explained_variance_score(y_true, y_pred)    Explained variance regression score function
    metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
    metrics.mean_squared_error(y_true, y_pred[, ...])   Mean squared error regression loss
    metrics.median_absolute_error(y_true, y_pred)   Median absolute error regression loss
    metrics.r2_score(y_true, y_pred[, ...]) R^2 (coefficient of determination) regression score function.
    """  

    if disp:
        print(xM.shape, yV.shape)

    clf = linear_model.LinearRegression()
    kf5_c = model_selection.KFold( n_splits=n_splits, shuffle=True)
    kf5 = kf5_c.split( xM)  
    cv_score_l = list()
    for train, test in kf5:
        # clf.fit( xM[train,:], yV[train,:])
        # yV is vector but not a metrix here. Hence, it should be treated as a vector
        clf.fit( xM[train,:], yV[train])

        yVp_test = clf.predict( xM[test,:])
        if scoring == 'median_absolute_error':
            cv_score_l.append( metrics.median_absolute_error(yV[test], yVp_test))
        else:
            raise ValueError( "{} scoring is not supported.".format( scoring))

    if disp: # Now only this flag is on, the output will be displayed. 
        print('{}: mean, std -->'.format( scoring), np.mean( cv_score_l), np.std( cv_score_l))

    return cv_score_l
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def cv_LinearRegression_ci( xM, yV, n_splits = 5, scoring = 'median_absolute_error', disp = False):
    """
    metrics.explained_variance_score(y_true, y_pred)    Explained variance regression score function
    metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
    metrics.mean_squared_error(y_true, y_pred[, ...])   Mean squared error regression loss
    metrics.median_absolute_error(y_true, y_pred)   Median absolute error regression loss
    metrics.r2_score(y_true, y_pred[, ...]) R^2 (coefficient of determination) regression score function.
    """  

    if disp:
        print(xM.shape, yV.shape)

    clf = linear_model.LinearRegression()
    kf5_c = model_selection.KFold( n_splits=n_splits, shuffle=True)
    kf5 = kf5_c.split( xM)  
    cv_score_l = list()
    ci_l = list()
    for train, test in kf5:
        # clf.fit( xM[train,:], yV[train,:])
        # yV is vector but not a metrix here. Hence, it should be treated as a vector
        clf.fit( xM[train,:], yV[train])

        yVp_test = clf.predict( xM[test,:])

        # Additionally, coef_ and intercept_ are stored. 
        ci_l.append( (clf.coef_, clf.intercept_))
        if scoring == 'median_absolute_error':
            cv_score_l.append( metrics.median_absolute_error(yV[test], yVp_test))
        else:
            raise ValueError( "{} scoring is not supported.".format( scoring))

    if disp: # Now only this flag is on, the output will be displayed. 
        print('{}: mean, std -->'.format( scoring), np.mean( cv_score_l), np.std( cv_score_l))

    return cv_score_l, ci_l
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def cv_LinearRegression_ci_pred( xM, yV, n_splits = 5, scoring = 'median_absolute_error', disp = False):
    """
    metrics.explained_variance_score(y_true, y_pred)    Explained variance regression score function
    metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
    metrics.mean_squared_error(y_true, y_pred[, ...])   Mean squared error regression loss
    metrics.median_absolute_error(y_true, y_pred)   Median absolute error regression loss
    metrics.r2_score(y_true, y_pred[, ...]) R^2 (coefficient of determination) regression score function.
    """  

    if disp:
        print(xM.shape, yV.shape)

    clf = linear_model.LinearRegression()
    kf5_c = model_selection.KFold( n_splits=n_splits, shuffle=True)
    kf5 = kf5_c.split( xM)  
    cv_score_l = list()
    ci_l = list()
    yVp = yV.copy() 
    for train, test in kf5:
        # clf.fit( xM[train,:], yV[train,:])
        # yV is vector but not a metrix here. Hence, it should be treated as a vector
        clf.fit( xM[train,:], yV[train])

        yVp_test = clf.predict( xM[test,:])
        yVp[test] = yVp_test

        # Additionally, coef_ and intercept_ are stored. 
        coef = np.array(clf.coef_).tolist()
        intercept = np.array(clf.intercept_).tolist()
        ci_l.append( (clf.coef_, clf.intercept_))
        if scoring == 'median_absolute_error':
            cv_score_l.append( metrics.median_absolute_error(yV[test], yVp_test))
        else:
            raise ValueError( "{} scoring is not supported.".format( scoring))

    if disp: # Now only this flag is on, the output will be displayed. 
        print('{}: mean, std -->'.format( scoring), np.mean( cv_score_l), np.std( cv_score_l))

    return cv_score_l, ci_l, yVp.A1.tolist()
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def cv_LinearRegression_ci_pred_full( xM, yV, n_splits = 5, shuffle=True, disp = False):
    """
    Note - scoring is not used. I may used later. Not it is remained for compatibility purpose.
    metrics.explained_variance_score(y_true, y_pred)    Explained variance regression score function
    metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
    metrics.mean_squared_error(y_true, y_pred[, ...])   Mean squared error regression loss
    metrics.median_absolute_error(y_true, y_pred)   Median absolute error regression loss
    metrics.r2_score(y_true, y_pred[, ...]) R^2 (coefficient of determination) regression score function.
    """  

    if disp:
        print(xM.shape, yV.shape)

    clf = linear_model.LinearRegression()
    kf5_c = model_selection.KFold( n_splits=n_splits, shuffle=shuffle)
    kf5 = kf5_c.split( xM)

    cv_score_l = list()
    ci_l = list()
    yVp = yV.copy() 
    for train, test in kf5:
        # clf.fit( xM[train,:], yV[train,:])
        # yV is vector but not a metrix here. Hence, it should be treated as a vector
        clf.fit( xM[train,:], yV[train])

        yVp_test = clf.predict( xM[test,:])
        yVp[test] = yVp_test

        # Additionally, coef_ and intercept_ are stored.        
        ci_l.append( (clf.coef_, clf.intercept_))
        y_a = np.array( yV[test])[:,0]
        yp_a = np.array( yVp_test)[:,0]
        cv_score_l.extend( np.abs(y_a - yp_a).tolist())

    return cv_score_l, ci_l, yVp.A1.tolist()
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def estimate_accuracy4(yEv, yEv_calc, disp = False):
    r_sqr = metrics.r2_score( yEv, yEv_calc)
    RMSE = np.sqrt( metrics.mean_squared_error( yEv, yEv_calc))
    MAE = metrics.mean_absolute_error( yEv, yEv_calc)
    DAE = metrics.median_absolute_error( yEv, yEv_calc)

    if disp:
        print("r^2={0:.2e}, RMSE={1:.2e}, MAE={2:.2e}, DAE={3:.2e}".format( r_sqr, RMSE, MAE, DAE))

    return r_sqr, RMSE, MAE, DAE
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def cv_LinearRegression_ci(xM, yV, n_folds=5, scoring='median_absolute_error', disp=False):
    """
    metrics.explained_variance_score(y_true, y_pred)    Explained variance regression score function
    metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
    metrics.mean_squared_error(y_true, y_pred[, ...])   Mean squared error regression loss
    metrics.median_absolute_error(y_true, y_pred)   Median absolute error regression loss
    metrics.r2_score(y_true, y_pred[, ...]) R^2 (coefficient of determination) regression score function.
    """

    if disp:
        print(xM.shape, yV.shape)

    clf = linear_model.LinearRegression()
    kf5_c = model_selection.KFold(n_splits=n_folds, shuffle=True)
    kf5 = kf5_c.split(xM)

    cv_score_l = list()
    ci_l = list()
    for train, test in kf5:
        # clf.fit( xM[train,:], yV[train,:])
        # yV is vector but not a metrix here. Hence, it should be treated as a
        # vector
        clf.fit(xM[train, :], yV[train])

        yVp_test = clf.predict(xM[test, :])

        # Additionally, coef_ and intercept_ are stored.
        ci_l.append((clf.coef_, clf.intercept_))
        if scoring == 'median_absolute_error':
            cv_score_l.append(
                metrics.median_absolute_error(yV[test], yVp_test))
        else:
            raise ValueError("{} scoring is not supported.".format(scoring))

    if disp:  # Now only this flag is on, the output will be displayed.
        print('{}: mean, std -->'.format(scoring),
              np.mean(cv_score_l), np.std(cv_score_l))

    return cv_score_l, ci_l
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def cv_LinearRegression_ci_pred_full_Ridge(xM, yV, alpha, n_folds=5, shuffle=True, disp=False):
    """
    Note - scoring is not used. I may used later. Not it is remained for compatibility purpose.
    metrics.explained_variance_score(y_true, y_pred)    Explained variance regression score function
    metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
    metrics.mean_squared_error(y_true, y_pred[, ...])   Mean squared error regression loss
    metrics.median_absolute_error(y_true, y_pred)   Median absolute error regression loss
    metrics.r2_score(y_true, y_pred[, ...]) R^2 (coefficient of determination) regression score function.
    """

    if disp:
        print(xM.shape, yV.shape)

    # print( 'alpha of Ridge is', alpha)
    clf = linear_model.Ridge(alpha)
    kf5_c = model_selection.KFold(n_splits=n_folds, shuffle=shuffle)
    kf5 = kf5_c.split(xM)

    cv_score_l = list()
    ci_l = list()
    yVp = yV.copy()
    for train, test in kf5:
        # clf.fit( xM[train,:], yV[train,:])
        # yV is vector but not a metrix here. Hence, it should be treated as a
        # vector
        clf.fit(xM[train, :], yV[train])

        yVp_test = clf.predict(xM[test, :])
        yVp[test] = yVp_test

        # Additionally, coef_ and intercept_ are stored.
        ci_l.append((clf.coef_, clf.intercept_))
        y_a = np.array(yV[test])[:, 0]
        yp_a = np.array(yVp_test)[:, 0]
        cv_score_l.extend(np.abs(y_a - yp_a).tolist())

    return cv_score_l, ci_l, yVp.A1.tolist()
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def cv_LinearRegression_ci_pred_full(xM, yV, n_folds=5, shuffle=True, disp=False):
    """
    Note - scoring is not used. I may used later. Not it is remained for compatibility purpose.
    metrics.explained_variance_score(y_true, y_pred)    Explained variance regression score function
    metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
    metrics.mean_squared_error(y_true, y_pred[, ...])   Mean squared error regression loss
    metrics.median_absolute_error(y_true, y_pred)   Median absolute error regression loss
    metrics.r2_score(y_true, y_pred[, ...]) R^2 (coefficient of determination) regression score function.
    """

    if disp:
        print(xM.shape, yV.shape)

    clf = linear_model.LinearRegression()
    kf5_c = model_selection.KFold(n_splits=n_folds, shuffle=shuffle)
    kf5 = kf5_c.split(xM)

    cv_score_l = list()
    ci_l = list()
    yVp = yV.copy()
    for train, test in kf5:
        # clf.fit( xM[train,:], yV[train,:])
        # yV is vector but not a metrix here. Hence, it should be treated as a
        # vector
        clf.fit(xM[train, :], yV[train])

        yVp_test = clf.predict(xM[test, :])
        yVp[test] = yVp_test

        # Additionally, coef_ and intercept_ are stored.
        ci_l.append((clf.coef_, clf.intercept_))
        y_a = np.array(yV[test])[:, 0]
        yp_a = np.array(yVp_test)[:, 0]
        cv_score_l.extend(np.abs(y_a - yp_a).tolist())

    return cv_score_l, ci_l, yVp.A1.tolist()
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def make_scoring(scoring):
    """
    Score is reversed if greater_is_better is False.
    """
    if scoring == 'r2':
        return metrics.make_scorer(metrics.r2_score)
    elif scoring == 'mean_absolute_error':
        return metrics.make_scorer(metrics.mean_absolute_error, greater_is_better=False)
    elif scoring == 'mean_squared_error':
        return metrics.make_scorer(metrics.mean_squared_error, greater_is_better=False)
    elif scoring == 'median_absolute_error':
        return metrics.make_scorer(metrics.median_absolute_error, greater_is_better=False)
    else:
        raise ValueError("Not supported scoring")
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def cv_LinearRegression( xM, yV, n_folds = 5, scoring = 'median_absolute_error', disp = False):
    """
    metrics.explained_variance_score(y_true, y_pred)    Explained variance regression score function
    metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
    metrics.mean_squared_error(y_true, y_pred[, ...])   Mean squared error regression loss
    metrics.median_absolute_error(y_true, y_pred)   Median absolute error regression loss
    metrics.r2_score(y_true, y_pred[, ...]) R^2 (coefficient of determination) regression score function.
    """  

    if disp:
        print(xM.shape, yV.shape)

    clf = linear_model.LinearRegression()
    kf5 = cross_validation.KFold( xM.shape[0], n_folds=n_folds, shuffle=True)

    cv_score_l = list()
    for train, test in kf5:
        # clf.fit( xM[train,:], yV[train,:])
        # yV is vector but not a metrix here. Hence, it should be treated as a vector
        clf.fit( xM[train,:], yV[train])

        yVp_test = clf.predict( xM[test,:])
        if scoring == 'median_absolute_error':
            cv_score_l.append( metrics.median_absolute_error(yV[test], yVp_test))
        else:
            raise ValueError( "{} scoring is not supported.".format( scoring))

    if disp: # Now only this flag is on, the output will be displayed. 
        print('{}: mean, std -->'.format( scoring), np.mean( cv_score_l), np.std( cv_score_l))

    return cv_score_l
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def cv_LinearRegression_ci_pred( xM, yV, n_folds = 5, scoring = 'median_absolute_error', disp = False):
    """
    metrics.explained_variance_score(y_true, y_pred)    Explained variance regression score function
    metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
    metrics.mean_squared_error(y_true, y_pred[, ...])   Mean squared error regression loss
    metrics.median_absolute_error(y_true, y_pred)   Median absolute error regression loss
    metrics.r2_score(y_true, y_pred[, ...]) R^2 (coefficient of determination) regression score function.
    """  

    if disp:
        print(xM.shape, yV.shape)

    clf = linear_model.LinearRegression()
    kf5 = cross_validation.KFold( xM.shape[0], n_folds=n_folds, shuffle=True)

    cv_score_l = list()
    ci_l = list()
    yVp = yV.copy() 
    for train, test in kf5:
        # clf.fit( xM[train,:], yV[train,:])
        # yV is vector but not a metrix here. Hence, it should be treated as a vector
        clf.fit( xM[train,:], yV[train])

        yVp_test = clf.predict( xM[test,:])
        yVp[test] = yVp_test

        # Additionally, coef_ and intercept_ are stored. 
        coef = np.array(clf.coef_).tolist()
        intercept = np.array(clf.intercept_).tolist()
        ci_l.append( (clf.coef_, clf.intercept_))
        if scoring == 'median_absolute_error':
            cv_score_l.append( metrics.median_absolute_error(yV[test], yVp_test))
        else:
            raise ValueError( "{} scoring is not supported.".format( scoring))

    if disp: # Now only this flag is on, the output will be displayed. 
        print('{}: mean, std -->'.format( scoring), np.mean( cv_score_l), np.std( cv_score_l))

    return cv_score_l, ci_l, yVp.A1.tolist()
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def cv_LinearRegression_ci_pred_full_Ridge( xM, yV, alpha, n_folds = 5, shuffle=True, disp = False):
    """
    Note - scoring is not used. I may used later. Not it is remained for compatibility purpose.
    metrics.explained_variance_score(y_true, y_pred)    Explained variance regression score function
    metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
    metrics.mean_squared_error(y_true, y_pred[, ...])   Mean squared error regression loss
    metrics.median_absolute_error(y_true, y_pred)   Median absolute error regression loss
    metrics.r2_score(y_true, y_pred[, ...]) R^2 (coefficient of determination) regression score function.
    """  

    if disp:
        print(xM.shape, yV.shape)

    # print( 'alpha of Ridge is', alpha)
    clf = linear_model.Ridge( alpha)
    kf5 = cross_validation.KFold( xM.shape[0], n_folds=n_folds, shuffle=shuffle)

    cv_score_l = list()
    ci_l = list()
    yVp = yV.copy() 
    for train, test in kf5:
        # clf.fit( xM[train,:], yV[train,:])
        # yV is vector but not a metrix here. Hence, it should be treated as a vector
        clf.fit( xM[train,:], yV[train])

        yVp_test = clf.predict( xM[test,:])
        yVp[test] = yVp_test

        # Additionally, coef_ and intercept_ are stored.        
        ci_l.append( (clf.coef_, clf.intercept_))
        y_a = np.array( yV[test])[:,0]
        yp_a = np.array( yVp_test)[:,0]
        cv_score_l.extend( np.abs(y_a - yp_a).tolist())

    return cv_score_l, ci_l, yVp.A1.tolist()
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def cv_LinearRegression_ci_pred_full( xM, yV, n_folds = 5, shuffle=True, disp = False):
    """
    Note - scoring is not used. I may used later. Not it is remained for compatibility purpose.
    metrics.explained_variance_score(y_true, y_pred)    Explained variance regression score function
    metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
    metrics.mean_squared_error(y_true, y_pred[, ...])   Mean squared error regression loss
    metrics.median_absolute_error(y_true, y_pred)   Median absolute error regression loss
    metrics.r2_score(y_true, y_pred[, ...]) R^2 (coefficient of determination) regression score function.
    """  

    if disp:
        print(xM.shape, yV.shape)

    clf = linear_model.LinearRegression()
    kf5 = cross_validation.KFold( xM.shape[0], n_folds=n_folds, shuffle=shuffle)

    cv_score_l = list()
    ci_l = list()
    yVp = yV.copy() 
    for train, test in kf5:
        # clf.fit( xM[train,:], yV[train,:])
        # yV is vector but not a metrix here. Hence, it should be treated as a vector
        clf.fit( xM[train,:], yV[train])

        yVp_test = clf.predict( xM[test,:])
        yVp[test] = yVp_test

        # Additionally, coef_ and intercept_ are stored.        
        ci_l.append( (clf.coef_, clf.intercept_))
        y_a = np.array( yV[test])[:,0]
        yp_a = np.array( yVp_test)[:,0]
        cv_score_l.extend( np.abs(y_a - yp_a).tolist())

    return cv_score_l, ci_l, yVp.A1.tolist()
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def cv_LinearRegression( xM, yV, n_folds = 5, scoring = 'median_absolute_error', disp = False):
    """
    metrics.explained_variance_score(y_true, y_pred)    Explained variance regression score function
    metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
    metrics.mean_squared_error(y_true, y_pred[, ...])   Mean squared error regression loss
    metrics.median_absolute_error(y_true, y_pred)   Median absolute error regression loss
    metrics.r2_score(y_true, y_pred[, ...]) R^2 (coefficient of determination) regression score function.
    """  

    if disp:
        print(xM.shape, yV.shape)

    clf = linear_model.LinearRegression()
    kf5 = cross_validation.KFold( xM.shape[0], n_folds=n_folds, shuffle=True)

    cv_score_l = list()
    for train, test in kf5:
        # clf.fit( xM[train,:], yV[train,:])
        # yV is vector but not a metrix here. Hence, it should be treated as a vector
        clf.fit( xM[train,:], yV[train])

        yVp_test = clf.predict( xM[test,:])
        if scoring == 'median_absolute_error':
            cv_score_l.append( metrics.median_absolute_error(yV[test], yVp_test))
        else:
            raise ValueError( "{} scoring is not supported.".format( scoring))

    if disp: # Now only this flag is on, the output will be displayed. 
        print('{}: mean, std -->'.format( scoring), np.mean( cv_score_l), np.std( cv_score_l))

    return cv_score_l
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def cv_LinearRegression_ci( xM, yV, n_folds = 5, scoring = 'median_absolute_error', disp = False):
    """
    metrics.explained_variance_score(y_true, y_pred)    Explained variance regression score function
    metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
    metrics.mean_squared_error(y_true, y_pred[, ...])   Mean squared error regression loss
    metrics.median_absolute_error(y_true, y_pred)   Median absolute error regression loss
    metrics.r2_score(y_true, y_pred[, ...]) R^2 (coefficient of determination) regression score function.
    """  

    if disp:
        print(xM.shape, yV.shape)

    clf = linear_model.LinearRegression()
    kf5 = cross_validation.KFold( xM.shape[0], n_folds=n_folds, shuffle=True)

    cv_score_l = list()
    ci_l = list()
    for train, test in kf5:
        # clf.fit( xM[train,:], yV[train,:])
        # yV is vector but not a metrix here. Hence, it should be treated as a vector
        clf.fit( xM[train,:], yV[train])

        yVp_test = clf.predict( xM[test,:])

        # Additionally, coef_ and intercept_ are stored. 
        ci_l.append( (clf.coef_, clf.intercept_))
        if scoring == 'median_absolute_error':
            cv_score_l.append( metrics.median_absolute_error(yV[test], yVp_test))
        else:
            raise ValueError( "{} scoring is not supported.".format( scoring))

    if disp: # Now only this flag is on, the output will be displayed. 
        print('{}: mean, std -->'.format( scoring), np.mean( cv_score_l), np.std( cv_score_l))

    return cv_score_l, ci_l
项目:jamespy_py3    作者:jskDr    | 项目源码 | 文件源码
def cv_LinearRegression_ci_pred_full_Ridge( xM, yV, alpha, n_folds = 5, shuffle=True, disp = False):
    """
    Note - scoring is not used. I may used later. Not it is remained for compatibility purpose.
    metrics.explained_variance_score(y_true, y_pred)    Explained variance regression score function
    metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
    metrics.mean_squared_error(y_true, y_pred[, ...])   Mean squared error regression loss
    metrics.median_absolute_error(y_true, y_pred)   Median absolute error regression loss
    metrics.r2_score(y_true, y_pred[, ...]) R^2 (coefficient of determination) regression score function.
    """  

    if disp:
        print(xM.shape, yV.shape)

    # print( 'alpha of Ridge is', alpha)
    clf = linear_model.Ridge( alpha)
    kf5 = cross_validation.KFold( xM.shape[0], n_folds=n_folds, shuffle=shuffle)

    cv_score_l = list()
    ci_l = list()
    yVp = yV.copy() 
    for train, test in kf5:
        # clf.fit( xM[train,:], yV[train,:])
        # yV is vector but not a metrix here. Hence, it should be treated as a vector
        clf.fit( xM[train,:], yV[train])

        yVp_test = clf.predict( xM[test,:])
        yVp[test] = yVp_test

        # Additionally, coef_ and intercept_ are stored.        
        ci_l.append( (clf.coef_, clf.intercept_))
        y_a = np.array( yV[test])[:,0]
        yp_a = np.array( yVp_test)[:,0]
        cv_score_l.extend( np.abs(y_a - yp_a).tolist())

    return cv_score_l, ci_l, yVp.A1.tolist()