Python sklearn.preprocessing 模块,MaxAbsScaler() 实例源码

我们从Python开源项目中,提取了以下11个代码示例,用于说明如何使用sklearn.preprocessing.MaxAbsScaler()

项目:Semantic-Texual-Similarity-Toolkits    作者:rgtjf    | 项目源码 | 文件源码
def train_model(self, train_file_path, model_path):
        print("==> Load the data ...")
        X_train, Y_train = self.load_file(train_file_path)
        print(train_file_path, shape(X_train))

        print("==> Train the model ...")
        min_max_scaler = preprocessing.MaxAbsScaler()
        X_train_minmax = min_max_scaler.fit_transform(X_train)
        clf = RandomForestRegressor(n_estimators=self.n_estimators)
        clf.fit(X_train_minmax.toarray(), Y_train)

        print("==> Save the model ...")
        pickle.dump(clf, open(model_path, 'wb'))

        scaler_path = model_path.replace('.pkl', '.scaler.pkl')
        pickle.dump(min_max_scaler, open(scaler_path, 'wb'))
        return clf
项目:Semantic-Texual-Similarity-Toolkits    作者:rgtjf    | 项目源码 | 文件源码
def train_model(self, train_file_path, model_path):
        print("==> Load the data ...")
        X_train, Y_train = self.load_file(train_file_path)
        print(train_file_path, shape(X_train))

        print("==> Train the model ...")
        min_max_scaler = preprocessing.MaxAbsScaler()
        X_train_minmax = min_max_scaler.fit_transform(X_train)

        clf = GradientBoostingRegressor(n_estimators=self.n_estimators)
        clf.fit(X_train_minmax.toarray(), Y_train)

        print("==> Save the model ...")
        pickle.dump(clf, open(model_path, 'wb'))

        scaler_path = model_path.replace('.pkl', '.scaler.pkl')
        pickle.dump(min_max_scaler, open(scaler_path, 'wb'))
        return clf
项目:color-features    作者:skearnes    | 项目源码 | 文件源码
def scale_features(features, train):
    """Scale features, using test set to learn parameters.

    Returns:
        Scaled copy of features.
    """
    if FLAGS.scaling is None:
        return features
    logging.info('Scaling features with %s', FLAGS.scaling)
    if FLAGS.scaling == 'max_abs':
        scaler = preprocessing.MaxAbsScaler()
    elif FLAGS.scaling == 'standard':
        scaler = preprocessing.StandardScaler()
    else:
        raise ValueError('Unrecognized scaling %s' % FLAGS.scaling)
    scaler.fit(features[train])
    return scaler.transform(features)
项目:ML-note    作者:JasonK93    | 项目源码 | 文件源码
def test_MaxAbsScaler():
    '''
    test the method of MaxAbs Scaler

    :return: None
    '''
    X=[   [1,5,1,2,10],
      [2,6,3,2,7],
      [3,7,5,6,4,],
      [4,8,7,8,1] ]
    print("before transform:",X)
    scaler=MaxAbsScaler()
    scaler.fit(X)
    print("scale_ is :",scaler.scale_)
    print("max_abs_ is :",scaler.max_abs_)
    print("after transform:",scaler.transform(X))
项目:Benchmarks    作者:ECP-CANDLE    | 项目源码 | 文件源码
def scale(df, scaling=None):
    """Scale data included in pandas dataframe.

    Parameters
    ----------
    df : pandas dataframe
        dataframe to scale
    scaling : 'maxabs', 'minmax', 'std', or None, optional (default 'std')
        type of scaling to apply
    """

    if scaling is None:
        return df

    df = df.dropna(axis=1, how='any')

    # Scaling data
    if scaling == 'maxabs':
        # Normalizing -1 to 1
        scaler = MaxAbsScaler()
    elif scaling == 'minmax':
        # Scaling to [0,1]
        scaler = MinMaxScaler()
    else:
        # Standard normalization
        scaler = StandardScaler()

    mat = df.as_matrix()
    mat = scaler.fit_transform(mat)
    # print(mat.shape)
    df = pd.DataFrame(mat, columns=df.columns)

    return df
项目:Benchmarks    作者:ECP-CANDLE    | 项目源码 | 文件源码
def impute_and_scale(df, scaling=None):
    """Impute missing values with mean and scale data included in pandas dataframe.

    Parameters
    ----------
    df : pandas dataframe
        dataframe to impute and scale
    scaling : 'maxabs' [-1,1], 'minmax' [0,1], 'std', or None, optional (default 'std')
        type of scaling to apply
    """

    df = df.dropna(axis=1, how='all')

    imputer = Imputer(strategy='mean', axis=0)
    mat = imputer.fit_transform(df)
    # print(mat.shape)

    if scaling is None:
        return pd.DataFrame(mat, columns=df.columns)

    # Scaling data
    if scaling == 'maxabs':
        # Normalizing -1 to 1
        scaler = MaxAbsScaler()
    elif scaling == 'minmax':
        # Scaling to [0,1]
        scaler = MinMaxScaler()
    else:
        # Standard normalization
        scaler = StandardScaler()

    mat = scaler.fit_transform(mat)

    # print(mat.shape)
    df = pd.DataFrame(mat, columns=df.columns)

    return df
项目:Benchmarks    作者:ECP-CANDLE    | 项目源码 | 文件源码
def scale(df, scaling=None):
    """Scale data included in pandas dataframe.

    Parameters
    ----------
    df : pandas dataframe
        dataframe to scale
    scaling : 'maxabs', 'minmax', 'std', or None, optional (default 'std')
        type of scaling to apply
    """

    if scaling is None:
        return df

    df = df.dropna(axis=1, how='any')

    # Scaling data
    if scaling == 'maxabs':
        # Normalizing -1 to 1
        scaler = MaxAbsScaler()
    elif scaling == 'minmax':
        # Scaling to [0,1]
        scaler = MinMaxScaler()
    else:
        # Standard normalization
        scaler = StandardScaler()

    mat = df.as_matrix()
    mat = scaler.fit_transform(mat)
    # print(mat.shape)
    df = pd.DataFrame(mat, columns=df.columns)

    return df
项目:Benchmarks    作者:ECP-CANDLE    | 项目源码 | 文件源码
def impute_and_scale(df, scaling=None):
    """Impute missing values with mean and scale data included in pandas dataframe.

    Parameters
    ----------
    df : pandas dataframe
        dataframe to impute and scale
    scaling : 'maxabs' [-1,1], 'minmax' [0,1], 'std', or None, optional (default 'std')
        type of scaling to apply
    """

    df = df.dropna(axis=1, how='all')

    imputer = Imputer(strategy='mean', axis=0)
    mat = imputer.fit_transform(df)
    # print(mat.shape)

    if scaling is None:
        return pd.DataFrame(mat, columns=df.columns)

    # Scaling data
    if scaling == 'maxabs':
        # Normalizing -1 to 1
        scaler = MaxAbsScaler()
    elif scaling == 'minmax':
        # Scaling to [0,1]
        scaler = MinMaxScaler()
    else:
        # Standard normalization
        scaler = StandardScaler()

    mat = scaler.fit_transform(mat)

    # print(mat.shape)
    df = pd.DataFrame(mat, columns=df.columns)

    return df
项目:Benchmarks    作者:ECP-CANDLE    | 项目源码 | 文件源码
def scale(df, scaling=None):
    """Scale data included in pandas dataframe.

    Parameters
    ----------
    df : pandas dataframe
        dataframe to scale
    scaling : 'maxabs', 'minmax', 'std', or None, optional (default 'std')
        type of scaling to apply
    """

    if scaling is None or scaling.lower() == 'none':
        return df

    df = df.dropna(axis=1, how='any')

    # Scaling data
    if scaling == 'maxabs':
        # Normalizing -1 to 1
        scaler = MaxAbsScaler()
    elif scaling == 'minmax':
        # Scaling to [0,1]
        scaler = MinMaxScaler()
    else:
        # Standard normalization
        scaler = StandardScaler()

    mat = df.as_matrix()
    mat = scaler.fit_transform(mat)
    df = pd.DataFrame(mat, columns=df.columns)

    return df
项目:Benchmarks    作者:ECP-CANDLE    | 项目源码 | 文件源码
def load_data(shuffle=True, n_cols=None):
    train_path = get_p1_file('http://ftp.mcs.anl.gov/pub/candle/public/benchmarks/P1B1/P1B1.train.csv')
    test_path = get_p1_file('http://ftp.mcs.anl.gov/pub/candle/public/benchmarks/P1B1/P1B1.test.csv')

    usecols = list(range(n_cols)) if n_cols else None

    df_train = pd.read_csv(train_path, engine='c', usecols=usecols)
    df_test = pd.read_csv(test_path, engine='c', usecols=usecols)

    df_train = df_train.drop('case_id', 1).astype(np.float32)
    df_test = df_test.drop('case_id', 1).astype(np.float32)

    if shuffle:
        df_train = df_train.sample(frac=1, random_state=seed)
        df_test = df_test.sample(frac=1, random_state=seed)

    X_train = df_train.as_matrix()
    X_test = df_test.as_matrix()

    scaler = MaxAbsScaler()
    mat = np.concatenate((X_train, X_test), axis=0)
    mat = scaler.fit_transform(mat)

    X_train = mat[:X_train.shape[0], :]
    X_test = mat[X_train.shape[0]:, :]

    return X_train, X_test
项目:Default-Credit-Card-Prediction    作者:AlexPnt    | 项目源码 | 文件源码
def scale_by_max_value(X):
    """
    Scale each feature by its abs maximum value.

    Keyword arguments:
    X -- The feature vectors    
    """

    if verbose:
        print '\nScaling to the range [-1,1] ...'

    max_abs_scaler = preprocessing.MaxAbsScaler()
    return max_abs_scaler.fit_transform(X)