Python sklearn.utils 模块,as_float_array() 实例源码

我们从Python开源项目中,提取了以下9个代码示例,用于说明如何使用sklearn.utils.as_float_array()

项目:skutil    作者:tgsmith61591    | 项目源码 | 文件源码
def _clean_nans(scores):
    scores = as_float_array(scores, copy=True)
    scores[np.isnan(scores)] = np.finfo(scores.dtype).min
    return scores
项目:Lyssandra    作者:ektormak    | 项目源码 | 文件源码
def fit(self, X, y=None):
        # X = array2d(X)
        n_samples, n_features = X.shape
        X = as_float_array(X, copy=self.copy)
        # substracts the mean for each feature vector
        self.mean_ = np.mean(X, axis=0)
        X -= self.mean_
        eigs, eigv = eigh(np.dot(X.T, X) / n_samples + \
                          self.bias * np.identity(n_features))
        components = np.dot(eigv * np.sqrt(1.0 / eigs), eigv.T)
        self.components_ = components
        # Order the explained variance from greatest to least
        self.explained_variance_ = eigs[::-1]
        return self
项目:skggm    作者:skggm    | 项目源码 | 文件源码
def fit(self, X, y=None, **fit_params):
        """Fits the inverse covariance model according to the given training
        data and parameters.

        Parameters
        -----------
        X : 2D ndarray, shape (n_features, n_features)
            Input data.

        Returns
        -------
        self
        """
        X = check_array(X, ensure_min_features=2, estimator=self)
        X = as_float_array(X, copy=False, force_all_finite=False)
        self.init_coefs(X)
        if self.method == 'quic':
            (self.precision_, self.covariance_, self.opt_, self.cputime_,
             self.iters_, self.duality_gap_) = quic(
                self.sample_covariance_,
                self.lam * self.lam_scale_,
                mode=self.mode,
                tol=self.tol,
                max_iter=self.max_iter,
                Theta0=self.Theta0,
                Sigma0=self.Sigma0,
                path=self.path_,
                msg=self.verbose
            )
        else:
            raise NotImplementedError(
                "Only method='quic' has been implemented.")

        self.is_fitted = True
        return self
项目:SVM-CNN    作者:dlmacedo    | 项目源码 | 文件源码
def fit(self, X, y):
        """
        Fit the model using X, y as training data.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape [n_samples, n_features]
            Training vectors, where n_samples is the number of samples
            and n_features is the number of features.

        y : array-like of shape [n_samples, n_outputs]
            Target values (class labels in classification, real numbers in
            regression)

        Returns
        -------
        self : object

            Returns an instance of self.
        """
        # fit random hidden layer and compute the hidden layer activations
        self.hidden_activations_ = self.hidden_layer.fit_transform(X)

        # solve the regression from hidden activations to outputs
        self._fit_regression(as_float_array(y, copy=True))

        return self
项目:xam    作者:MaxHalford    | 项目源码 | 文件源码
def transform(self, X):
        if isinstance(X, pd.Series):
            return X.to_frame()
        X = as_float_array(X)
        X = check_array(X)
        return pd.DataFrame(X, index=self.index, columns=self.columns, dtype=self.dtype)
项目:Parallel-SGD    作者:angadgill    | 项目源码 | 文件源码
def test_as_float_array():
    # Test function for as_float_array
    X = np.ones((3, 10), dtype=np.int32)
    X = X + np.arange(10, dtype=np.int32)
    # Checks that the return type is ok
    X2 = as_float_array(X, copy=False)
    np.testing.assert_equal(X2.dtype, np.float32)
    # Another test
    X = X.astype(np.int64)
    X2 = as_float_array(X, copy=True)
    # Checking that the array wasn't overwritten
    assert_true(as_float_array(X, False) is not X)
    # Checking that the new type is ok
    np.testing.assert_equal(X2.dtype, np.float64)
    # Here, X is of the right type, it shouldn't be modified
    X = np.ones((3, 2), dtype=np.float32)
    assert_true(as_float_array(X, copy=False) is X)
    # Test that if X is fortran ordered it stays
    X = np.asfortranarray(X)
    assert_true(np.isfortran(as_float_array(X, copy=True)))

    # Test the copy parameter with some matrices
    matrices = [
        np.matrix(np.arange(5)),
        sp.csc_matrix(np.arange(5)).toarray(),
        sparse_random_matrix(10, 10, density=0.10).toarray()
    ]
    for M in matrices:
        N = as_float_array(M, copy=True)
        N[0, 0] = np.nan
        assert_false(np.isnan(M).any())
项目:Parallel-SGD    作者:angadgill    | 项目源码 | 文件源码
def test_np_matrix():
    # Confirm that input validation code does not return np.matrix
    X = np.arange(12).reshape(3, 4)

    assert_false(isinstance(as_float_array(X), np.matrix))
    assert_false(isinstance(as_float_array(np.matrix(X)), np.matrix))
    assert_false(isinstance(as_float_array(sp.csc_matrix(X)), np.matrix))
项目:Parallel-SGD    作者:angadgill    | 项目源码 | 文件源码
def test_memmap():
    # Confirm that input validation code doesn't copy memory mapped arrays

    asflt = lambda x: as_float_array(x, copy=False)

    with NamedTemporaryFile(prefix='sklearn-test') as tmp:
        M = np.memmap(tmp, shape=(10, 10), dtype=np.float32)
        M[:] = 0

        for f in (check_array, np.asarray, asflt):
            X = f(M)
            X[:] = 1
            assert_array_equal(X.ravel(), M.ravel())
            X[:] = 0
项目:skggm    作者:skggm    | 项目源码 | 文件源码
def fit(self, X, y=None):
        """Estimate the precision using an adaptive maximum likelihood estimator.
        Parameters
        ----------
        X : ndarray, shape (n_samples, n_features)
            Data from which to compute the proportion matrix.
        """
        X = check_array(X, ensure_min_features=2, estimator=self)
        X = as_float_array(X, copy=False, force_all_finite=False)

        n_samples, n_features = X.shape

        # perform first estimate
        self.estimator.fit(X)

        if self.method == 'binary':
            # generate weights
            self.lam_ = self._binary_weights(self.estimator)

            # perform second step adaptive estimate
            self.estimator_ = QuicGraphLasso(
                lam=self.lam_ * self.estimator.lam_,
                mode='default',
                init_method='cov',
                auto_scale=False
            )
            self.estimator_.fit(X)

        elif self.method == 'inverse_squared':
            self.lam_ = self._inverse_squared_weights(self.estimator)

            # perform second step adaptive estimate
            self.estimator_ = QuicGraphLassoCV(
                lam=self.lam_ * self.estimator.lam_,
                auto_scale=False
            )
            self.estimator_.fit(X)

        elif self.method == 'inverse':
            self.lam_ = self._inverse_weights(self.estimator)

            # perform second step adaptive estimate
            self.estimator_ = QuicGraphLassoCV(
                lam=self.lam_ * self.estimator.lam_,
                auto_scale=False
            )
            self.estimator_.fit(X)

        else:
            raise NotImplementedError(
                ("Only method='binary', 'inverse_squared', or",
                 "'inverse' have been implemented.")
            )

        self.is_fitted = True
        return self