Python sklearn 模块,__version__() 实例源码

我们从Python开源项目中,提取了以下13个代码示例,用于说明如何使用sklearn.__version__()

项目:Parallel-SGD    作者:angadgill    | 项目源码 | 文件源码
def get_scipy_status():
    """
    Returns a dictionary containing a boolean specifying whether SciPy
    is up-to-date, along with the version string (empty string if
    not installed).
    """
    scipy_status = {}
    try:
        import scipy
        scipy_version = scipy.__version__
        scipy_status['up_to_date'] = parse_version(
            scipy_version) >= parse_version(scipy_min_version)
        scipy_status['version'] = scipy_version
    except ImportError:
        scipy_status['up_to_date'] = False
        scipy_status['version'] = ""
    return scipy_status
项目:Parallel-SGD    作者:angadgill    | 项目源码 | 文件源码
def get_numpy_status():
    """
    Returns a dictionary containing a boolean specifying whether NumPy
    is up-to-date, along with the version string (empty string if
    not installed).
    """
    numpy_status = {}
    try:
        import numpy
        numpy_version = numpy.__version__
        numpy_status['up_to_date'] = parse_version(
            numpy_version) >= parse_version(numpy_min_version)
        numpy_status['version'] = numpy_version
    except ImportError:
        numpy_status['up_to_date'] = False
        numpy_status['version'] = ""
    return numpy_status
项目:skutil    作者:tgsmith61591    | 项目源码 | 文件源码
def get_pandas_status():
    try:
        import pandas as pd
        return _check_version(pd.__version__, pandas_min_version)
    except ImportError:
        traceback.print_exc()
        return default_status
项目:skutil    作者:tgsmith61591    | 项目源码 | 文件源码
def get_sklearn_status():
    try:
        import sklearn as sk
        return _check_version(sk.__version__, sklearn_min_version)
    except ImportError:
        traceback.print_exc()
        return default_status
项目:skutil    作者:tgsmith61591    | 项目源码 | 文件源码
def get_numpy_status():
    try:
        import numpy as np
        return _check_version(np.__version__, numpy_min_version)
    except ImportError:
        traceback.print_exc()
        return default_status
项目:skutil    作者:tgsmith61591    | 项目源码 | 文件源码
def get_scipy_status():
    try:
        import scipy as sc
        return _check_version(sc.__version__, scipy_min_version)
    except ImportError:
        traceback.print_exc()
        return default_status
项目:skutil    作者:tgsmith61591    | 项目源码 | 文件源码
def get_h2o_status():
    try:
        import h2o
        return _check_version(h2o.__version__, h2o_min_version)
    except ImportError:
        traceback.print_exc()
        return default_status
项目:operalib    作者:operalib    | 项目源码 | 文件源码
def test_valid_estimator():
    """Test whether ovk.ONORMA is a valid sklearn estimator."""
    from sklearn import __version__
    # Adding patch revision number cause crash
    if LooseVersion(__version__) >= LooseVersion('0.18'):
        check_estimator(ovk.ONORMA)
    else:
        warn('sklearn\'s check_estimator seems to be broken in __version__ <='
             ' 0.17.x... skipping')
项目:operalib    作者:operalib    | 项目源码 | 文件源码
def test_valid_estimator():
    """Test whether ovk.OVKRidge is a valid sklearn estimator."""
    from sklearn import __version__
    # Adding patch revision number causes crash
    if LooseVersion(__version__) >= LooseVersion('0.18'):
        check_estimator(ovk.OVKRidge)
    else:
        warn('sklearn\'s check_estimator seems to be broken in __version__ <='
             ' 0.17.x... skipping')
项目:decoding_challenge_cortana_2016_3rd    作者:kingjr    | 项目源码 | 文件源码
def check_version(library, min_version):
    """Check minimum library version required

    Parameters
    ----------
    library : str
        The library name to import. Must have a ``__version__`` property.
    min_version : str
        The minimum version string. Anything that matches
        ``'(\\d+ | [a-z]+ | \\.)'``

    Returns
    -------
    ok : bool
        True if the library exists with at least the specified version.
    """
    ok = True
    try:
        library = __import__(library)
    except ImportError:
        ok = False
    else:
        this_version = LooseVersion(library.__version__)
        if this_version < min_version:
            ok = False
    return ok
项目:introspective    作者:numeristical    | 项目源码 | 文件源码
def _fit_multiclass(self, X, y, verbose=False):
        """Fit the calibrated model in multiclass setting

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Training data.

        y : array-like, shape (n_samples,)
            Target values.

        Returns
        -------
        self : object
            Returns an instance of self.
        """
        class_list = np.unique(y)
        num_classes = len(class_list)
        y_mod = np.zeros(len(y))
        for i in range(num_classes):
           y_mod[y==class_list[i]]=i

        y_mod = y_mod.astype(int)
        if ((type(self.cv)==str) and (self.cv=='prefit')):
            self.uncalibrated_classifier = self.base_estimator
            y_pred = self.uncalibrated_classifier.predict_proba(X)

        else:
            y_pred = np.zeros((len(y_mod),num_classes))
            if sklearn.__version__ < '0.18':
                skf = StratifiedKFold(y_mod, n_folds=self.cv,shuffle=True)
            else:
                skf = StratifiedKFold(n_splits=self.cv, shuffle=True).split(X, y)
            for idx, (train_idx, test_idx) in enumerate(skf):
                if verbose:
                    print("training fold {} of {}".format(idx+1, self.cv))
                X_train = np.array(X)[train_idx,:]
                X_test = np.array(X)[test_idx,:]
                y_train = np.array(y_mod)[train_idx]
                # We could also copy the model first and then fit it
                this_estimator = clone(self.base_estimator)
                this_estimator.fit(X_train,y_train)
                y_pred[test_idx,:] = this_estimator.predict_proba(X_test)

            if verbose:
                print("Training Full Model")
            self.uncalibrated_classifier = clone(self.base_estimator)
            self.uncalibrated_classifier.fit(X, y_mod)

        # calibrating function
        if verbose:
            print("Determining Calibration Function")
        if self.method=='logistic':
            self.calib_func, self.cf_list = prob_calibration_function_multiclass(y_mod, self.pre_transform(y_pred), verbose=verbose, **self.calib_kwargs)
        if self.method=='ridge':
            self.calib_func, self.cf_list = prob_calibration_function_multiclass(y_mod, self.pre_transform(y_pred), verbose=verbose, method='ridge', **self.calib_kwargs)
        # training full model

        return self
项目:introspective    作者:numeristical    | 项目源码 | 文件源码
def fit(self, X, y, verbose=False):
        """Fit the calibrated model

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Training data.

        y : array-like, shape (n_samples,)
            Target values.

        Returns
        -------
        self : object
            Returns an instance of self.
        """
        class_list = np.unique(y)
        num_classes = len(class_list)
        y_mod = np.zeros(len(y))

        for i in range(num_classes):
            y_mod[np.where(y==class_list[i])]=i

        y_mod = y_mod.astype(int)
        if ((type(self.cv)==str) and (self.cv=='prefit')):
            self.uncalibrated_classifier = self.base_estimator
            y_pred = self.uncalibrated_classifier.predict_proba(X)[:,1]

        else:
            y_pred = np.zeros((len(y_mod),num_classes))
            if sklearn.__version__ < '0.18':
                skf = StratifiedKFold(y_mod, n_folds=self.cv,shuffle=True)
            else:
                skf = StratifiedKFold(n_splits=self.cv, shuffle=True).split(X, y)
            for idx, (train_idx, test_idx) in enumerate(skf):
                if verbose:
                    print("training fold {} of {}".format(idx+1, self.cv))
                X_train = np.array(X)[train_idx,:]
                X_test = np.array(X)[test_idx,:]
                y_train = np.array(y_mod)[train_idx]
                # We could also copy the model first and then fit it
                this_estimator = clone(self.base_estimator)
                this_estimator.fit(X_train,y_train)
                y_pred[test_idx,:] = this_estimator.predict_proba(X_test)

            if verbose:
                print("Training Full Model")
            self.uncalibrated_classifier = clone(self.base_estimator)
            self.uncalibrated_classifier.fit(X, y_mod)

        # calibrating function
        if verbose:
            print("Determining Calibration Function")
        if self.method=='logistic':
            self.calib_func = prob_calibration_function_multiclass(y_mod, y_pred, verbose=verbose, **self.calib_kwargs)
        if self.method=='ridge':
            self.calib_func = prob_calibration_function_multiclass(y_mod, y_pred, verbose=verbose, method='ridge', **self.calib_kwargs)
        # training full model

        return self
项目:Parallel-SGD    作者:angadgill    | 项目源码 | 文件源码
def test_dump():
    Xs, y = load_svmlight_file(datafile)
    Xd = Xs.toarray()

    # slicing a csr_matrix can unsort its .indices, so test that we sort
    # those correctly
    Xsliced = Xs[np.arange(Xs.shape[0])]

    for X in (Xs, Xd, Xsliced):
        for zero_based in (True, False):
            for dtype in [np.float32, np.float64, np.int32]:
                f = BytesIO()
                # we need to pass a comment to get the version info in;
                # LibSVM doesn't grok comments so they're not put in by
                # default anymore.
                dump_svmlight_file(X.astype(dtype), y, f, comment="test",
                                   zero_based=zero_based)
                f.seek(0)

                comment = f.readline()
                try:
                    comment = str(comment, "utf-8")
                except TypeError:  # fails in Python 2.x
                    pass

                assert_in("scikit-learn %s" % sklearn.__version__, comment)

                comment = f.readline()
                try:
                    comment = str(comment, "utf-8")
                except TypeError:  # fails in Python 2.x
                    pass

                assert_in(["one", "zero"][zero_based] + "-based", comment)

                X2, y2 = load_svmlight_file(f, dtype=dtype,
                                            zero_based=zero_based)
                assert_equal(X2.dtype, dtype)
                assert_array_equal(X2.sorted_indices().indices, X2.indices)
                if dtype == np.float32:
                    assert_array_almost_equal(
                        # allow a rounding error at the last decimal place
                        Xd.astype(dtype), X2.toarray(), 4)
                else:
                    assert_array_almost_equal(
                        # allow a rounding error at the last decimal place
                        Xd.astype(dtype), X2.toarray(), 15)
                assert_array_equal(y, y2)