我们从Python开源项目中,提取了以下4个代码示例,用于说明如何使用sqlalchemy.types.Float()。
def __init__(self,col_A,col_B): self.col_A = col_A self.col_B = col_B self.type_A = col_A.type self.type_B = col_B.type self.affinity_A = self.type_A._type_affinity self.affinity_B = self.type_B._type_affinity if self.affinity_A is not self.affinity_B: self.diff = True return if isinstance(self.type_A,Float) or isinstance(self.type_B,Float): if not (isinstance(self.type_A,Float) and isinstance(self.type_B,Float)): self.diff=True return for attr in ('precision','scale','length'): A = getattr(self.type_A,attr,None) B = getattr(self.type_B,attr,None) if not (A is None or B is None) and A!=B: self.diff=True return
def test_reflect_select(engine, table): assert len(table.c) == 9 assert isinstance(table.c.integer, Column) assert isinstance(table.c.integer.type, types.Integer) assert isinstance(table.c.timestamp.type, types.TIMESTAMP) assert isinstance(table.c.string.type, types.String) assert isinstance(table.c.float.type, types.Float) assert isinstance(table.c.boolean.type, types.Boolean) assert isinstance(table.c.date.type, types.DATE) assert isinstance(table.c.datetime.type, types.DATETIME) assert isinstance(table.c.time.type, types.TIME) assert isinstance(table.c.bytes.type, types.BINARY) rows = table.select().execute().fetchall() assert len(rows) == 1000
def _schema(self, model): schema_fields = {'id': ID(stored=True, unique=True)} searchable = set(model.__searchable__) analyzer = getattr(model, '__whoosh_analyzer__') if hasattr( model, '__whoosh_analyzer__') else self.analyzer primary_keys = [key.name for key in inspect(model).primary_key] for field in searchable: if '.' in field: fields = field.split('.') field_attr = getattr( getattr(model, fields[0]).property.mapper.class_, fields[1]) else: field_attr = getattr(model, field) if hasattr(field_attr, 'descriptor') and isinstance( field_attr.descriptor, hybrid_property): field_type = Text type_hint = getattr(field_attr, 'type_hint', None) if type_hint is not None: type_hint_map = { 'date': Date, 'datetime': DateTime, 'boolean': Boolean, 'integer': Integer, 'float': Float } field_type = type_hint if isclass( type_hint) else type_hint_map.get(type_hint.lower(), Text) else: field_type = field_attr.property.columns[0].type if field in primary_keys: schema_fields[field] = ID(stored=True, unique=True) elif field_type in (DateTime, Date): schema_fields[field] = DATETIME(stored=True, sortable=True) elif field_type == Integer: schema_fields[field] = NUMERIC(stored=True, numtype=int) elif field_type == Float: schema_fields[field] = NUMERIC(stored=True, numtype=float) elif field_type == Boolean: schema_fields[field] = BOOLEAN(stored=True) else: schema_fields[field] = TEXT( stored=True, analyzer=analyzer, sortable=False) return Schema(**schema_fields)