我们从Python开源项目中,提取了以下7个代码示例,用于说明如何使用statistics.pvariance()。
def PVARIANCE(df, n, price='Close', mu=None): """ Population variance of data """ pvariance_list = [] i = 0 while i < len(df[price]): if i + 1 < n: pvariance = float('NaN') else: start = i + 1 - n end = i + 1 pvariance = statistics.pvariance(df[price][start:end], mu) pvariance_list.append(pvariance) i += 1 return pvariance_list
def pvariance(self): return statistics.pvariance(self.price) # ??
def main(): print(stats.mean(range(6))) print(stats.median(range(6))) print(stats.median_low(range(6))) print(stats.median_high(range(6))) print(stats.median_grouped(range(6))) try: print(stats.mode(range(6))) except Exception as e: print(e) print(stats.mode(list(range(6)) + [3])) print(stats.pstdev(list(range(6)) + [3])) print(stats.stdev(list(range(6)) + [3])) print(stats.pvariance(list(range(6)) + [3])) print(stats.variance(list(range(6)) + [3]))
def test_compare_to_variance(self): # Test that stdev is, in fact, the square root of variance. data = [random.uniform(-17, 24) for _ in range(1000)] expected = math.sqrt(statistics.pvariance(data)) self.assertEqual(self.func(data), expected)
def pvariance(text): """ Finds the population variance of a space-separated list of numbers. Example:: /pvariance 33 54 43 65 43 62 """ return format_output(statistics.pvariance(parse_numeric_list(text)))
def setup(): commands.add(mean) commands.add(median) commands.add(median_low) commands.add(median_high) commands.add(median_grouped) commands.add(mode) commands.add(pstdev) commands.add(pvariance) commands.add(stdev) commands.add(variance)