Python sympy 模块,S 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用sympy.S

项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_eval_trace():
    up = JzKet(S(1)/2, S(1)/2)
    down = JzKet(S(1)/2, -S(1)/2)
    d = Density((up, 0.5), (down, 0.5))

    t = Tr(d)
    assert t.doit() == 1

    #test dummy time dependent states
    class TestTimeDepKet(TimeDepKet):
        def _eval_trace(self, bra, **options):
            return 1

    x, t = symbols('x t')
    k1 = TestTimeDepKet(0, 0.5)
    k2 = TestTimeDepKet(0, 1)
    d = Density([k1, 0.5], [k2, 0.5])
    assert d.doit() == (0.5 * OuterProduct(k1, k1.dual) +
                        0.5 * OuterProduct(k2, k2.dual))

    t = Tr(d)
    assert t.doit() == 1
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_wavefunction():
    a = 1/Z
    R = {
        (1, 0): 2*sqrt(1/a**3) * exp(-r/a),
        (2, 0): sqrt(1/(2*a**3)) * exp(-r/(2*a)) * (1 - r/(2*a)),
        (2, 1): S(1)/2 * sqrt(1/(6*a**3)) * exp(-r/(2*a)) * r/a,
        (3, 0): S(2)/3 * sqrt(1/(3*a**3)) * exp(-r/(3*a)) *
        (1 - 2*r/(3*a) + S(2)/27 * (r/a)**2),
        (3, 1): S(4)/27 * sqrt(2/(3*a**3)) * exp(-r/(3*a)) *
        (1 - r/(6*a)) * r/a,
        (3, 2): S(2)/81 * sqrt(2/(15*a**3)) * exp(-r/(3*a)) * (r/a)**2,
        (4, 0): S(1)/4 * sqrt(1/a**3) * exp(-r/(4*a)) *
        (1 - 3*r/(4*a) + S(1)/8 * (r/a)**2 - S(1)/192 * (r/a)**3),
        (4, 1): S(1)/16 * sqrt(5/(3*a**3)) * exp(-r/(4*a)) *
        (1 - r/(4*a) + S(1)/80 * (r/a)**2) * (r/a),
        (4, 2): S(1)/64 * sqrt(1/(5*a**3)) * exp(-r/(4*a)) *
        (1 - r/(12*a)) * (r/a)**2,
        (4, 3): S(1)/768 * sqrt(1/(35*a**3)) * exp(-r/(4*a)) * (r/a)**3,
    }
    for n, l in R:
        assert simplify(R_nl(n, l, r, Z) - R[(n, l)]) == 0
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_transpose():
    Sq = MatrixSymbol('Sq', n, n)

    assert transpose(A) == Transpose(A)
    assert Transpose(A).shape == (m, n)
    assert Transpose(A*B).shape == (l, n)
    assert transpose(Transpose(A)) == A
    assert isinstance(Transpose(Transpose(A)), Transpose)

    assert adjoint(Transpose(A)) == Adjoint(Transpose(A))
    assert conjugate(Transpose(A)) == Adjoint(A)

    assert Transpose(eye(3)).doit() == eye(3)

    assert Transpose(S(5)).doit() == S(5)

    assert Transpose(Matrix([[1, 2], [3, 4]])).doit() == Matrix([[1, 3], [2, 4]])

    assert transpose(trace(Sq)) == trace(Sq)
    assert trace(Transpose(Sq)) == trace(Sq)

    assert Transpose(Sq)[0, 1] == Sq[1, 0]

    assert Transpose(A*B).doit() == Transpose(B) * Transpose(A)
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_spde():
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
    raises(NonElementaryIntegralException, lambda: spde(Poly(t, t), Poly((t - 1)*(t**2 + 1), t), Poly(1, t), 0, DE))
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
    assert spde(Poly(t**2 + x*t*2 + x**2, t), Poly(t**2/x**2 + (2/x - 1)*t, t),
    Poly(t**2/x**2 + (2/x - 1)*t, t), 0, DE) == \
        (Poly(0, t), Poly(0, t), 0, Poly(0, t), Poly(1, t))
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t0/x**2, t0), Poly(1/x, t)]})
    assert spde(Poly(t**2, t), Poly(-t**2/x**2 - 1/x, t),
    Poly((2*x - 1)*t**4 + (t0 + x)/x*t**3 - (t0 + 4*x**2)/(2*x)*t**2 + x*t, t), 3, DE) == \
        (Poly(0, t), Poly(0, t), 0, Poly(0, t),
        Poly(t0*t**2/2 + x**2*t**2 - x**2*t, t))
    DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
    assert spde(Poly(x**2 + x + 1, x), Poly(-2*x - 1, x), Poly(x**5/2 +
    3*x**4/4 + x**3 - x**2 + 1, x), 4, DE) == \
        (Poly(0, x), Poly(x/2 - S(1)/4, x), 2, Poly(x**2 + x + 1, x), Poly(5*x/4, x))
    assert spde(Poly(x**2 + x + 1, x), Poly(-2*x - 1, x), Poly(x**5/2 +
    3*x**4/4 + x**3 - x**2 + 1, x), n, DE) == \
        (Poly(0, x), Poly(x/2 - S(1)/4, x), -2 + n, Poly(x**2 + x + 1, x), Poly(5*x/4, x))
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1, t)]})
    raises(NonElementaryIntegralException, lambda: spde(Poly((t - 1)*(t**2 + 1)**2, t), Poly((t - 1)*(t**2 + 1), t), Poly(1, t), 0, DE))
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_solve_poly_rde_no_cancel():
    # deg(b) large
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2, t)]})
    assert solve_poly_rde(Poly(t**2 + 1, t), Poly(t**3 + (x + 1)*t**2 + t + x + 2, t),
    oo, DE) == Poly(t + x, t)
    # deg(b) small
    DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
    assert solve_poly_rde(Poly(0, x), Poly(x/2 - S(1)/4, x), oo, DE) == \
        Poly(x**2/4 - x/4, x)
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
    assert solve_poly_rde(Poly(2, t), Poly(t**2 + 2*t + 3, t), 1, DE) == \
        Poly(t + 1, t, x)
    # deg(b) == deg(D) - 1
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
    assert no_cancel_equal(Poly(1 - t, t),
    Poly(t**3 + t**2 - 2*x*t - 2*x, t), oo, DE) == \
        (Poly(t**2, t), 1, Poly((-2 - 2*x)*t - 2*x, t))
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_is_deriv_k():
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t1), Poly(1/(x + 1), t2)],
        'L_K': [1, 2], 'E_K': [], 'L_args': [x, x + 1], 'E_args': []})
    assert is_deriv_k(Poly(2*x**2 + 2*x, t2), Poly(1, t2), DE) == \
        ([(t1, 1), (t2, 1)], t1 + t2, 2)

    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t1), Poly(t2, t2)],
        'L_K': [1], 'E_K': [2], 'L_args': [x], 'E_args': [x]})
    assert is_deriv_k(Poly(x**2*t2**3, t2), Poly(1, t2), DE) == \
        ([(x, 3), (t1, 2)], 2*t1 + 3*x, 1)
    # TODO: Add more tests, including ones with exponentials

    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(2/x, t1)],
        'L_K': [1], 'E_K': [], 'L_args': [x**2], 'E_args': []})
    assert is_deriv_k(Poly(x, t1), Poly(1, t1), DE) == \
        ([(t1, S(1)/2)], t1/2, 1)

    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(2/(1 + x), t0)],
        'L_K': [1], 'E_K': [], 'L_args': [x**2 + 2*x + 1], 'E_args': []})
    assert is_deriv_k(Poly(1 + x, t0), Poly(1, t0), DE) == \
        ([(t0, S(1)/2)], t0/2, 1)
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_dup_clear_denoms():
    assert dup_clear_denoms([], QQ, ZZ) == (ZZ(1), [])

    assert dup_clear_denoms([QQ(1)], QQ, ZZ) == (ZZ(1), [QQ(1)])
    assert dup_clear_denoms([QQ(7)], QQ, ZZ) == (ZZ(1), [QQ(7)])

    assert dup_clear_denoms([QQ(7, 3)], QQ) == (ZZ(3), [QQ(7)])
    assert dup_clear_denoms([QQ(7, 3)], QQ, ZZ) == (ZZ(3), [QQ(7)])

    assert dup_clear_denoms(
        [QQ(3), QQ(1), QQ(0)], QQ, ZZ) == (ZZ(1), [QQ(3), QQ(1), QQ(0)])
    assert dup_clear_denoms(
        [QQ(1), QQ(1, 2), QQ(0)], QQ, ZZ) == (ZZ(2), [QQ(2), QQ(1), QQ(0)])

    assert dup_clear_denoms([QQ(3), QQ(
        1), QQ(0)], QQ, ZZ, convert=True) == (ZZ(1), [ZZ(3), ZZ(1), ZZ(0)])
    assert dup_clear_denoms([QQ(1), QQ(
        1, 2), QQ(0)], QQ, ZZ, convert=True) == (ZZ(2), [ZZ(2), ZZ(1), ZZ(0)])

    assert dup_clear_denoms(
        [EX(S(3)/2), EX(S(9)/4)], EX) == (EX(4), [EX(6), EX(9)])

    assert dup_clear_denoms([EX(7)], EX) == (EX(1), [EX(7)])
    assert dup_clear_denoms([EX(sin(x)/x), EX(0)], EX) == (EX(x), [EX(sin(x)), EX(0)])
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_syzygy():
    R = QQ.old_poly_ring(x, y, z)
    M = R.free_module(1).submodule([x*y], [y*z], [x*z])
    S = R.free_module(3).submodule([0, x, -y], [z, -x, 0])
    assert M.syzygy_module() == S

    M2 = M / ([x*y*z],)
    S2 = R.free_module(3).submodule([z, 0, 0], [0, x, 0], [0, 0, y])
    assert M2.syzygy_module() == S2

    F = R.free_module(3)
    assert F.submodule(*F.basis()).syzygy_module() == F.submodule()

    R2 = QQ.old_poly_ring(x, y, z) / [x*y*z]
    M3 = R2.free_module(1).submodule([x*y], [y*z], [x*z])
    S3 = R2.free_module(3).submodule([z, 0, 0], [0, x, 0], [0, 0, y])
    assert M3.syzygy_module() == S3
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_in_terms_of_generators():
    R = QQ.old_poly_ring(x, order="ilex")
    M = R.free_module(2).submodule([2*x, 0], [1, 2])
    assert M.in_terms_of_generators(
        [x, x]) == [R.convert(S(1)/4), R.convert(x/2)]
    raises(ValueError, lambda: M.in_terms_of_generators([1, 0]))

    M = R.free_module(2) / ([x, 0], [1, 1])
    SM = M.submodule([1, x])
    assert SM.in_terms_of_generators([2, 0]) == [R.convert(-2/(x - 1))]

    R = QQ.old_poly_ring(x, y) / [x**2 - y**2]
    M = R.free_module(2)
    SM = M.submodule([x, 0], [0, y])
    assert SM.in_terms_of_generators(
        [x**2, x**2]) == [R.convert(x), R.convert(y)]
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_special_printers():
    class IntervalPrinter(LambdaPrinter):
        """Use ``lambda`` printer but print numbers as ``mpi`` intervals. """

        def _print_Integer(self, expr):
            return "mpi('%s')" % super(IntervalPrinter, self)._print_Integer(expr)

        def _print_Rational(self, expr):
            return "mpi('%s')" % super(IntervalPrinter, self)._print_Rational(expr)

    def intervalrepr(expr):
        return IntervalPrinter().doprint(expr)

    expr = sympy.sqrt(sympy.sqrt(2) + sympy.sqrt(3)) + sympy.S(1)/2

    func0 = lambdify((), expr, modules="mpmath", printer=intervalrepr)
    func1 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter)
    func2 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter())

    mpi = type(mpmath.mpi(1, 2))

    assert isinstance(func0(), mpi)
    assert isinstance(func1(), mpi)
    assert isinstance(func2(), mpi)
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def test_limit_seq():
    e = binomial(2*n, n) / Sum(binomial(2*k, k), (k, 1, n))
    assert limit_seq(e) == S(3) / 4
    assert limit_seq(e, m) == e

    e = (5*n**3 + 3*n**2 + 4) / (3*n**3 + 4*n - 5)
    assert limit_seq(e, n) == S(5) / 3

    e = (harmonic(n) * Sum(harmonic(k), (k, 1, n))) / (n * harmonic(2*n)**2)
    assert limit_seq(e, n) == 1

    e = Sum(k**2 * Sum(2**m/m, (m, 1, k)), (k, 1, n)) / (2**n*n)
    assert limit_seq(e, n) == 4

    e = (Sum(binomial(3*k, k) * binomial(5*k, k), (k, 1, n)) /
         (binomial(3*n, n) * binomial(5*n, n)))
    assert limit_seq(e, n) == S(84375) / 83351

    e = Sum(harmonic(k)**2/k, (k, 1, 2*n)) / harmonic(n)**3
    assert limit_seq(e, n) == S(1) / 3

    raises(ValueError, lambda: limit_seq(e * m))
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def test_limit_seq_fail():
    # improve Summation algorithm or add ad-hoc criteria
    e = (harmonic(n)**3 * Sum(1/harmonic(k), (k, 1, n)) /
         (n * Sum(harmonic(k)/k, (k, 1, n))))
    assert limit_seq(e, n) == 2

    # No unique dominant term
    e = (Sum(2**k * binomial(2*k, k) / k**2, (k, 1, n)) /
         (Sum(2**k/k*2, (k, 1, n)) * Sum(binomial(2*k, k), (k, 1, n))))
    assert limit_seq(e, n) == S(3) / 7

    # Simplifications of summations needs to be improved.
    e = n**3*Sum(2**k/k**2, (k, 1, n))**2 / (2**n * Sum(2**k/k, (k, 1, n)))
    assert limit_seq(e, n) == 2

    e = (harmonic(n) * Sum(2**k/k, (k, 1, n)) /
         (n * Sum(2**k*harmonic(k)/k**2, (k, 1, n))))
    assert limit_seq(e, n) == 1

    e = (Sum(2**k*factorial(k) / k**2, (k, 1, 2*n)) /
         (Sum(4**k/k**2, (k, 1, n)) * Sum(factorial(k), (k, 1, 2*n))))
    assert limit_seq(e, n) == S(3) / 16
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def __init__(self, list_of_poly, parent):
        # the parent ring for this operator
        # must be an RecurrenceOperatorAlgebra object
        self.parent = parent
        # sequence of polynomials in n for each power of Sn
        # represents the operator
        # convert the expressions into ring elements using from_sympy
        if isinstance(list_of_poly, list):
            for i, j in enumerate(list_of_poly):
                if isinstance(j, int):
                    list_of_poly[i] = self.parent.base.from_sympy(S(j))
                elif not isinstance(j, self.parent.base.dtype):
                    list_of_poly[i] = self.parent.base.from_sympy(j)

            self.listofpoly = list_of_poly
        self.order = len(self.listofpoly) - 1
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def test_differentiate_finite():
    x, y = symbols('x y')
    f = Function('f')
    res0 = differentiate_finite(f(x, y) + exp(42), x, y)
    xm, xp, ym, yp = [v + sign*S(1)/2 for v, sign in product([x, y], [-1, 1])]
    ref0 = f(xm, ym) + f(xp, yp) - f(xm, yp) - f(xp, ym)
    assert (res0 - ref0).simplify() == 0

    g = Function('g')
    res1 = differentiate_finite(f(x)*g(x) + 42, x)
    ref1 = (-f(x - S(1)/2) + f(x + S(1)/2))*g(x) + \
           (-g(x - S(1)/2) + g(x + S(1)/2))*f(x)
    assert (res1 - ref1).simplify() == 0

    res2 = differentiate_finite(f(x) + x**3 + 42, x, points=[x-1, x+1],
                                evaluate=False)
    ref2 = (f(x + 1) + (x + 1)**3 - f(x - 1) - (x - 1)**3)/2
    assert (res2 - ref2).simplify() == 0
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def test_boson_states():
    a = BosonOp("a")

    # Fock states
    n = 3
    assert (BosonFockBra(0) * BosonFockKet(1)).doit() == 0
    assert (BosonFockBra(1) * BosonFockKet(1)).doit() == 1
    assert qapply(BosonFockBra(n) * Dagger(a)**n * BosonFockKet(0)) \
        == sqrt(prod(range(1, n+1)))

    # Coherent states
    alpha1, alpha2 = 1.2, 4.3
    assert (BosonCoherentBra(alpha1) * BosonCoherentKet(alpha1)).doit() == 1
    assert (BosonCoherentBra(alpha2) * BosonCoherentKet(alpha2)).doit() == 1
    assert abs((BosonCoherentBra(alpha1) * BosonCoherentKet(alpha2)).doit() -
               exp(-S(1) / 2 * (alpha1 - alpha2) ** 2)) < 1e-12
    assert qapply(a * BosonCoherentKet(alpha1)) == \
        alpha1 * BosonCoherentKet(alpha1)
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def test_eval_trace():
    up = JzKet(S(1)/2, S(1)/2)
    down = JzKet(S(1)/2, -S(1)/2)
    d = Density((up, 0.5), (down, 0.5))

    t = Tr(d)
    assert t.doit() == 1

    #test dummy time dependent states
    class TestTimeDepKet(TimeDepKet):
        def _eval_trace(self, bra, **options):
            return 1

    x, t = symbols('x t')
    k1 = TestTimeDepKet(0, 0.5)
    k2 = TestTimeDepKet(0, 1)
    d = Density([k1, 0.5], [k2, 0.5])
    assert d.doit() == (0.5 * OuterProduct(k1, k1.dual) +
                        0.5 * OuterProduct(k2, k2.dual))

    t = Tr(d)
    assert t.doit() == 1
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def test_clebsch_gordan3():
    j_1 = S(3)/2
    j_2 = S(3)/2
    m = S(3)
    j = S(3)
    m_1 = S(3)/2
    m_2 = S(3)/2
    assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1


    j_1 = S(3)/2
    j_2 = S(3)/2
    m = S(2)
    j = S(2)
    m_1 = S(3)/2
    m_2 = S(1)/2
    assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1/sqrt(2)

    j_1 = S(3)/2
    j_2 = S(3)/2
    m = S(2)
    j = S(3)
    m_1 = S(3)/2
    m_2 = S(1)/2
    assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1/sqrt(2)
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def test_clebsch_gordan5():
    j_1 = S(5)/2
    j_2 = S(1)
    m = S(7)/2
    j = S(7)/2
    m_1 = S(5)/2
    m_2 = 1
    assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1


    j_1 = S(5)/2
    j_2 = S(1)
    m = S(5)/2
    j = S(5)/2
    m_1 = S(5)/2
    m_2 = 0
    assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == sqrt(5)/sqrt(7)

    j_1 = S(5)/2
    j_2 = S(1)
    m = S(3)/2
    j = S(3)/2
    m_1 = S(1)/2
    m_2 = 1
    assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1/sqrt(15)
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def test_wavefunction():
    a = 1/Z
    R = {
        (1, 0): 2*sqrt(1/a**3) * exp(-r/a),
        (2, 0): sqrt(1/(2*a**3)) * exp(-r/(2*a)) * (1 - r/(2*a)),
        (2, 1): S(1)/2 * sqrt(1/(6*a**3)) * exp(-r/(2*a)) * r/a,
        (3, 0): S(2)/3 * sqrt(1/(3*a**3)) * exp(-r/(3*a)) *
        (1 - 2*r/(3*a) + S(2)/27 * (r/a)**2),
        (3, 1): S(4)/27 * sqrt(2/(3*a**3)) * exp(-r/(3*a)) *
        (1 - r/(6*a)) * r/a,
        (3, 2): S(2)/81 * sqrt(2/(15*a**3)) * exp(-r/(3*a)) * (r/a)**2,
        (4, 0): S(1)/4 * sqrt(1/a**3) * exp(-r/(4*a)) *
        (1 - 3*r/(4*a) + S(1)/8 * (r/a)**2 - S(1)/192 * (r/a)**3),
        (4, 1): S(1)/16 * sqrt(5/(3*a**3)) * exp(-r/(4*a)) *
        (1 - r/(4*a) + S(1)/80 * (r/a)**2) * (r/a),
        (4, 2): S(1)/64 * sqrt(1/(5*a**3)) * exp(-r/(4*a)) *
        (1 - r/(12*a)) * (r/a)**2,
        (4, 3): S(1)/768 * sqrt(1/(35*a**3)) * exp(-r/(4*a)) * (r/a)**3,
    }
    for n, l in R:
        assert simplify(R_nl(n, l, r, Z) - R[(n, l)]) == 0
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def test_transpose():
    Sq = MatrixSymbol('Sq', n, n)

    assert transpose(A) == Transpose(A)
    assert Transpose(A).shape == (m, n)
    assert Transpose(A*B).shape == (l, n)
    assert transpose(Transpose(A)) == A
    assert isinstance(Transpose(Transpose(A)), Transpose)

    assert adjoint(Transpose(A)) == Adjoint(Transpose(A))
    assert conjugate(Transpose(A)) == Adjoint(A)

    assert Transpose(eye(3)).doit() == eye(3)

    assert Transpose(S(5)).doit() == S(5)

    assert Transpose(Matrix([[1, 2], [3, 4]])).doit() == Matrix([[1, 3], [2, 4]])

    assert transpose(trace(Sq)) == trace(Sq)
    assert trace(Transpose(Sq)) == trace(Sq)

    assert Transpose(Sq)[0, 1] == Sq[1, 0]

    assert Transpose(A*B).doit() == Transpose(B) * Transpose(A)
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def test_spde():
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
    raises(NonElementaryIntegralException, lambda: spde(Poly(t, t), Poly((t - 1)*(t**2 + 1), t), Poly(1, t), 0, DE))
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
    assert spde(Poly(t**2 + x*t*2 + x**2, t), Poly(t**2/x**2 + (2/x - 1)*t, t),
    Poly(t**2/x**2 + (2/x - 1)*t, t), 0, DE) == \
        (Poly(0, t), Poly(0, t), 0, Poly(0, t), Poly(1, t))
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t0/x**2, t0), Poly(1/x, t)]})
    assert spde(Poly(t**2, t), Poly(-t**2/x**2 - 1/x, t),
    Poly((2*x - 1)*t**4 + (t0 + x)/x*t**3 - (t0 + 4*x**2)/(2*x)*t**2 + x*t, t), 3, DE) == \
        (Poly(0, t), Poly(0, t), 0, Poly(0, t),
        Poly(t0*t**2/2 + x**2*t**2 - x**2*t, t))
    DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
    assert spde(Poly(x**2 + x + 1, x), Poly(-2*x - 1, x), Poly(x**5/2 +
    3*x**4/4 + x**3 - x**2 + 1, x), 4, DE) == \
        (Poly(0, x), Poly(x/2 - S(1)/4, x), 2, Poly(x**2 + x + 1, x), Poly(5*x/4, x))
    assert spde(Poly(x**2 + x + 1, x), Poly(-2*x - 1, x), Poly(x**5/2 +
    3*x**4/4 + x**3 - x**2 + 1, x), n, DE) == \
        (Poly(0, x), Poly(x/2 - S(1)/4, x), -2 + n, Poly(x**2 + x + 1, x), Poly(5*x/4, x))
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1, t)]})
    raises(NonElementaryIntegralException, lambda: spde(Poly((t - 1)*(t**2 + 1)**2, t), Poly((t - 1)*(t**2 + 1), t), Poly(1, t), 0, DE))
    DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
    assert spde(Poly(x**2 - x, x), Poly(1, x), Poly(9*x**4 - 10*x**3 + 2*x**2, x), 4, DE) == (Poly(0, x), Poly(0, x), 0, Poly(0, x), Poly(3*x**3 - 2*x**2, x))
    assert spde(Poly(x**2 - x, x), Poly(x**2 - 5*x + 3, x), Poly(x**7 - x**6 - 2*x**4 + 3*x**3 - x**2, x), 5, DE) == \
        (Poly(1, x), Poly(x + 1, x), 1, Poly(x**4 - x**3, x), Poly(x**3 - x**2, x))
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def test_solve_poly_rde_no_cancel():
    # deg(b) large
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2, t)]})
    assert solve_poly_rde(Poly(t**2 + 1, t), Poly(t**3 + (x + 1)*t**2 + t + x + 2, t),
    oo, DE) == Poly(t + x, t)
    # deg(b) small
    DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
    assert solve_poly_rde(Poly(0, x), Poly(x/2 - S(1)/4, x), oo, DE) == \
        Poly(x**2/4 - x/4, x)
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
    assert solve_poly_rde(Poly(2, t), Poly(t**2 + 2*t + 3, t), 1, DE) == \
        Poly(t + 1, t, x)
    # deg(b) == deg(D) - 1
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
    assert no_cancel_equal(Poly(1 - t, t),
    Poly(t**3 + t**2 - 2*x*t - 2*x, t), oo, DE) == \
        (Poly(t**2, t), 1, Poly((-2 - 2*x)*t - 2*x, t))
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def test_syzygy():
    R = QQ.old_poly_ring(x, y, z)
    M = R.free_module(1).submodule([x*y], [y*z], [x*z])
    S = R.free_module(3).submodule([0, x, -y], [z, -x, 0])
    assert M.syzygy_module() == S

    M2 = M / ([x*y*z],)
    S2 = R.free_module(3).submodule([z, 0, 0], [0, x, 0], [0, 0, y])
    assert M2.syzygy_module() == S2

    F = R.free_module(3)
    assert F.submodule(*F.basis()).syzygy_module() == F.submodule()

    R2 = QQ.old_poly_ring(x, y, z) / [x*y*z]
    M3 = R2.free_module(1).submodule([x*y], [y*z], [x*z])
    S3 = R2.free_module(3).submodule([z, 0, 0], [0, x, 0], [0, 0, y])
    assert M3.syzygy_module() == S3
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def test_in_terms_of_generators():
    R = QQ.old_poly_ring(x, order="ilex")
    M = R.free_module(2).submodule([2*x, 0], [1, 2])
    assert M.in_terms_of_generators(
        [x, x]) == [R.convert(S(1)/4), R.convert(x/2)]
    raises(ValueError, lambda: M.in_terms_of_generators([1, 0]))

    M = R.free_module(2) / ([x, 0], [1, 1])
    SM = M.submodule([1, x])
    assert SM.in_terms_of_generators([2, 0]) == [R.convert(-2/(x - 1))]

    R = QQ.old_poly_ring(x, y) / [x**2 - y**2]
    M = R.free_module(2)
    SM = M.submodule([x, 0], [0, y])
    assert SM.in_terms_of_generators(
        [x**2, x**2]) == [R.convert(x), R.convert(y)]
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def test_numexpr_printer():
    if not numexpr:
        skip("numexpr not installed.")

    # if translation/printing is done incorrectly then evaluating
    # a lambdified numexpr expression will throw an exception
    from sympy.printing.lambdarepr import NumExprPrinter
    from sympy import S

    blacklist = ('where', 'complex', 'contains')
    arg_tuple = (x, y, z) # some functions take more than one argument
    for sym in NumExprPrinter._numexpr_functions.keys():
        if sym in blacklist:
            continue
        ssym = S(sym)
        if hasattr(ssym, '_nargs'):
            nargs = ssym._nargs[0]
        else:
            nargs = 1
        args = arg_tuple[:nargs]
        f = lambdify(args, ssym(*args), modules='numexpr')
        assert f(*(1, )*nargs) is not None
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def test_issue9474():
    mods = [None, 'math']
    if numpy:
        mods.append('numpy')
    if mpmath:
        mods.append('mpmath')
    for mod in mods:
        f = lambdify(x, sympy.S(1)/x, modules=mod)
        assert f(2) == 0.5
        f = lambdify(x, floor(sympy.S(1)/x), modules=mod)
        assert f(2) == 0

    if mpmath:
        f = lambdify(x, sympy.S(1)/sympy.Abs(x), modules=['mpmath'])
        assert isinstance(f(2), mpmath.mpf)

    for absfunc, modules in product([Abs, abs], mods):
        f = lambdify(x, absfunc(x), modules=modules)
        assert f(-1) == 1
        assert f(1) == 1
        assert f(3+4j) == 5
项目:Python-iBeacon-Scan    作者:NikNitro    | 项目源码 | 文件源码
def test_special_printers():
    class IntervalPrinter(LambdaPrinter):
        """Use ``lambda`` printer but print numbers as ``mpi`` intervals. """

        def _print_Integer(self, expr):
            return "mpi('%s')" % super(IntervalPrinter, self)._print_Integer(expr)

        def _print_Rational(self, expr):
            return "mpi('%s')" % super(IntervalPrinter, self)._print_Rational(expr)

    def intervalrepr(expr):
        return IntervalPrinter().doprint(expr)

    expr = sympy.sqrt(sympy.sqrt(2) + sympy.sqrt(3)) + sympy.S(1)/2

    func0 = lambdify((), expr, modules="mpmath", printer=intervalrepr)
    func1 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter)
    func2 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter())

    mpi = type(mpmath.mpi(1, 2))

    assert isinstance(func0(), mpi)
    assert isinstance(func1(), mpi)
    assert isinstance(func2(), mpi)
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_functions():
    assert residue(1/sin(x), x, 0) == 1
    assert residue(2/sin(x), x, 0) == 2
    assert residue(1/sin(x)**2, x, 0) == 0
    assert residue(1/sin(x)**5, x, 0) == S(3)/8
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_expressions_failing():
    assert residue(1/(x**4 + 1), x, exp(I*pi/4)) == -(S(1)/4 + I/4)/sqrt(2)

    n = Symbol('n', integer=True, positive=True)
    assert residue(exp(z)/(z - pi*I/4*a)**n, z, I*pi*a) == \
        exp(I*pi*a/4)/factorial(n - 1)
    assert residue(1/(x**2 + a**2)**2, x, a*I) == -I/4/a**3
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_sqrtdenest():
    d = {sqrt(5 + 2 * r6): r2 + r3,
        sqrt(5. + 2 * r6): sqrt(5. + 2 * r6),
        sqrt(5. + 4*sqrt(5 + 2 * r6)): sqrt(5.0 + 4*r2 + 4*r3),
        sqrt(r2): sqrt(r2),
        sqrt(5 + r7): sqrt(5 + r7),
        sqrt(3 + sqrt(5 + 2*r7)):
         3*r2*(5 + 2*r7)**(S(1)/4)/(2*sqrt(6 + 3*r7)) +
         r2*sqrt(6 + 3*r7)/(2*(5 + 2*r7)**(S(1)/4)),
        sqrt(3 + 2*r3): 3**(S(3)/4)*(r6/2 + 3*r2/2)/3}
    for i in d:
        assert sqrtdenest(i) == d[i]
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_sqrtdenest_rec():
    assert sqrtdenest(sqrt(-4*sqrt(14) - 2*r6 + 4*sqrt(21) + 33)) == \
        -r2 + r3 + 2*r7
    assert sqrtdenest(sqrt(-28*r7 - 14*r5 + 4*sqrt(35) + 82)) == \
        -7 + r5 + 2*r7
    assert sqrtdenest(sqrt(6*r2/11 + 2*sqrt(22)/11 + 6*sqrt(11)/11 + 2)) == \
        sqrt(11)*(r2 + 3 + sqrt(11))/11
    assert sqrtdenest(sqrt(468*r3 + 3024*r2 + 2912*r6 + 19735)) == \
        9*r3 + 26 + 56*r6
    z = sqrt(-490*r3 - 98*sqrt(115) - 98*sqrt(345) - 2107)
    assert sqrtdenest(z) == sqrt(-1)*(7*r5 + 7*r15 + 7*sqrt(23))
    z = sqrt(-4*sqrt(14) - 2*r6 + 4*sqrt(21) + 34)
    assert sqrtdenest(z) == z
    assert sqrtdenest(sqrt(-8*r2 - 2*r5 + 18)) == -r10 + 1 + r2 + r5
    assert sqrtdenest(sqrt(8*r2 + 2*r5 - 18)) == \
        sqrt(-1)*(-r10 + 1 + r2 + r5)
    assert sqrtdenest(sqrt(8*r2/3 + 14*r5/3 + S(154)/9)) == \
        -r10/3 + r2 + r5 + 3
    assert sqrtdenest(sqrt(sqrt(2*r6 + 5) + sqrt(2*r7 + 8))) == \
        sqrt(1 + r2 + r3 + r7)
    assert sqrtdenest(sqrt(4*r15 + 8*r5 + 12*r3 + 24)) == 1 + r3 + r5 + r15

    w = 1 + r2 + r3 + r5 + r7
    assert sqrtdenest(sqrt((w**2).expand())) == w
    z = sqrt((w**2).expand() + 1)
    assert sqrtdenest(z) == z

    z = sqrt(2*r10 + 6*r2 + 4*r5 + 12 + 10*r15 + 30*r3)
    assert sqrtdenest(z) == z
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_lattice_make_args():
    assert join.make_args(0) == set([0])
    assert join.make_args(1) == set([1])
    assert join.make_args(join(2, 3, 4)) == set([S(2), S(3), S(4)])
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_apply_finite_diff():
    x, h = symbols('x h')
    f = Function('f')
    assert (apply_finite_diff(1, [x-h, x+h], [f(x-h), f(x+h)], x) -
            (f(x+h)-f(x-h))/(2*h)).simplify() == 0

    assert (apply_finite_diff(1, [5, 6, 7], [f(5), f(6), f(7)], 5) -
            (-S(3)/2*f(5) + 2*f(6) - S(1)/2*f(7))).simplify() == 0
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_gosper_normal():
    assert gosper_normal(4*n + 5, 2*(4*n + 1)*(2*n + 3), n) == \
        (Poly(S(1)/4, n), Poly(n + S(3)/2), Poly(n + S(1)/4))
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_gosper_term():
    assert gosper_term((4*k + 1)*factorial(
        k)/factorial(2*k + 1), k) == (-k - S(1)/2)/(k + S(1)/4)
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_gosper_sum_parametric():
    assert gosper_sum(binomial(S(1)/2, m - j + 1)*binomial(S(1)/2, m + j), (j, 1, n)) == \
        n*(1 + m - n)*(-1 + 2*m + 2*n)*binomial(S(1)/2, 1 + m - n)* \
        binomial(S(1)/2, m + n)/(m*(1 + 2*m))
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_gosper_sum_AeqB_part1():
    f1a = n**4
    f1b = n**3*2**n
    f1c = 1/(n**2 + sqrt(5)*n - 1)
    f1d = n**4*4**n/binomial(2*n, n)
    f1e = factorial(3*n)/(factorial(n)*factorial(n + 1)*factorial(n + 2)*27**n)
    f1f = binomial(2*n, n)**2/((n + 1)*4**(2*n))
    f1g = (4*n - 1)*binomial(2*n, n)**2/((2*n - 1)**2*4**(2*n))
    f1h = n*factorial(n - S(1)/2)**2/factorial(n + 1)**2

    g1a = m*(m + 1)*(2*m + 1)*(3*m**2 + 3*m - 1)/30
    g1b = 26 + 2**(m + 1)*(m**3 - 3*m**2 + 9*m - 13)
    g1c = (m + 1)*(m*(m**2 - 7*m + 3)*sqrt(5) - (
        3*m**3 - 7*m**2 + 19*m - 6))/(2*m**3*sqrt(5) + m**4 + 5*m**2 - 1)/6
    g1d = -S(2)/231 + 2*4**m*(m + 1)*(63*m**4 + 112*m**3 + 18*m**2 -
             22*m + 3)/(693*binomial(2*m, m))
    g1e = -S(9)/2 + (81*m**2 + 261*m + 200)*factorial(
        3*m + 2)/(40*27**m*factorial(m)*factorial(m + 1)*factorial(m + 2))
    g1f = (2*m + 1)**2*binomial(2*m, m)**2/(4**(2*m)*(m + 1))
    g1g = -binomial(2*m, m)**2/4**(2*m)
    g1h = 4*pi -(2*m + 1)**2*(3*m + 4)*factorial(m - S(1)/2)**2/factorial(m + 1)**2

    g = gosper_sum(f1a, (n, 0, m))
    assert g is not None and simplify(g - g1a) == 0
    g = gosper_sum(f1b, (n, 0, m))
    assert g is not None and simplify(g - g1b) == 0
    g = gosper_sum(f1c, (n, 0, m))
    assert g is not None and simplify(g - g1c) == 0
    g = gosper_sum(f1d, (n, 0, m))
    assert g is not None and simplify(g - g1d) == 0
    g = gosper_sum(f1e, (n, 0, m))
    assert g is not None and simplify(g - g1e) == 0
    g = gosper_sum(f1f, (n, 0, m))
    assert g is not None and simplify(g - g1f) == 0
    g = gosper_sum(f1g, (n, 0, m))
    assert g is not None and simplify(g - g1g) == 0
    g = gosper_sum(f1h, (n, 0, m))
    # need to call rewrite(gamma) here because we have terms involving
    # factorial(1/2)
    assert g is not None and simplify(g - g1h).rewrite(gamma) == 0
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def symbol_array(base, n=None):
    """
    Generates a string arrary with str_array and replaces each string in
    array with Symbol of same name.
    """
    symbol_str_lst = str_array(base, n)
    result = []
    for symbol_str in symbol_str_lst:
        result.append(S(symbol_str))
    return tuple(result)
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def is_pell_transformation_ok(eq):
    """
    Test whether X*Y, X, or Y terms are present in the equation
    after transforming the equation using the transformation returned
    by transformation_to_pell(). If they are not present we are good.
    Moreover, coefficient of X**2 should be a divisor of coefficient of
    Y**2 and the constant term.
    """
    A, B = transformation_to_DN(eq)
    u = (A*Matrix([X, Y]) + B)[0]
    v = (A*Matrix([X, Y]) + B)[1]
    simplified = _mexpand(Subs(eq, (x, y), (u, v)).doit())

    coeff = dict([reversed(t.as_independent(*[X, Y])) for t in simplified.args])

    for term in [X*Y, X, Y]:
        if term in coeff.keys():
            return False

    for term in [X**2, Y**2, Integer(1)]:
        if term not in coeff.keys():
            coeff[term] = Integer(0)

    if coeff[X**2] != 0:
        return isinstance(S(coeff[Y**2])/coeff[X**2], Integer) and isinstance(S(coeff[Integer(1)])/coeff[X**2], Integer)

    return True
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def E_nl(n, Z=1):
    """
    Returns the energy of the state (n, l) in Hartree atomic units.

    The energy doesn't depend on "l".

    Examples
    ========

    >>> from sympy import var
    >>> from sympy.physics.hydrogen import E_nl
    >>> var("n Z")
    (n, Z)
    >>> E_nl(n, Z)
    -Z**2/(2*n**2)
    >>> E_nl(1)
    -1/2
    >>> E_nl(2)
    -1/8
    >>> E_nl(3)
    -1/18
    >>> E_nl(3, 47)
    -2209/18

    """
    n, Z = S(n), S(Z)
    if n.is_integer and (n < 1):
        raise ValueError("'n' must be positive integer")
    return -Z**2/(2*n**2)
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_represent_rotation():
    assert represent(Rotation(0, pi/2, 0)) == \
        Matrix(
            [[WignerD(
                S(
                    1)/2, S(
                        1)/2, S(
                            1)/2, 0, pi/2, 0), WignerD(
                                S(1)/2, S(1)/2, -S(1)/2, 0, pi/2, 0)],
                [WignerD(S(1)/2, -S(1)/2, S(1)/2, 0, pi/2, 0), WignerD(S(1)/2, -S(1)/2, -S(1)/2, 0, pi/2, 0)]])
    assert represent(Rotation(0, pi/2, 0), doit=True) == \
        Matrix([[sqrt(2)/2, -sqrt(2)/2],
                [sqrt(2)/2, sqrt(2)/2]])
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_innerproduct():
    assert InnerProduct(JzBra(1, 1), JzKet(1, 1)).doit() == 1
    assert InnerProduct(
        JzBra(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2)).doit() == 0
    assert InnerProduct(JzBra(j, m), JzKet(j, m)).doit() == 1
    assert InnerProduct(JzBra(1, 0), JyKet(1, 1)).doit() == I/sqrt(2)
    assert InnerProduct(
        JxBra(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)).doit() == -sqrt(2)/2
    assert InnerProduct(JyBra(1, 1), JzKet(1, 1)).doit() == S(1)/2
    assert InnerProduct(JxBra(1, -1), JyKet(1, 1)).doit() == 0
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_jzket():
    j, m = symbols('j m')
    # j not integer or half integer
    raises(ValueError, lambda: JzKet(S(2)/3, -S(1)/3))
    raises(ValueError, lambda: JzKet(S(2)/3, m))
    # j < 0
    raises(ValueError, lambda: JzKet(-1, 1))
    raises(ValueError, lambda: JzKet(-1, m))
    # m not integer or half integer
    raises(ValueError, lambda: JzKet(j, -S(1)/3))
    # abs(m) > j
    raises(ValueError, lambda: JzKet(1, 2))
    raises(ValueError, lambda: JzKet(1, -2))
    # j-m not integer
    raises(ValueError, lambda: JzKet(1, S(1)/2))
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_doit():
    assert Wigner3j(1/2, -1/2, 1/2, 1/2, 0, 0).doit() == -sqrt(2)/2
    assert Wigner6j(1, 2, 3, 2, 1, 2).doit() == sqrt(21)/105
    assert Wigner9j(
        2, 1, 1, S(3)/2, S(1)/2, 1, S(1)/2, S(1)/2, 0).doit() == sqrt(2)/12
    assert CG(1/2, 1/2, 1/2, -1/2, 1, 0).doit() == sqrt(2)/2
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_entropy():
    up = JzKet(S(1)/2, S(1)/2)
    down = JzKet(S(1)/2, -S(1)/2)
    d = Density((up, 0.5), (down, 0.5))

    # test for density object
    ent = entropy(d)
    assert entropy(d) == 0.5*log(2)
    assert d.entropy() == 0.5*log(2)

    np = import_module('numpy', min_module_version='1.4.0')
    if np:
        #do this test only if 'numpy' is available on test machine
        np_mat = represent(d, format='numpy')
        ent = entropy(np_mat)
        assert isinstance(np_mat, np.matrixlib.defmatrix.matrix)
        assert ent.real == 0.69314718055994529
        assert ent.imag == 0

    scipy = import_module('scipy', __import__kwargs={'fromlist': ['sparse']})
    if scipy and np:
        #do this test only if numpy and scipy are available
        mat = represent(d, format="scipy.sparse")
        assert isinstance(mat, scipy_sparse_matrix)
        assert ent.real == 0.69314718055994529
        assert ent.imag == 0
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_clebsch_gordan_docs():
    assert clebsch_gordan(S(3)/2, S(1)/2, 2, S(3)/2, S(1)/2, 2) == 1
    assert clebsch_gordan(S(3)/2, S(1)/2, 1, S(3)/2, -S(1)/2, 1) == sqrt(3)/2
    assert clebsch_gordan(S(3)/2, S(1)/2, 1, -S(1)/2, S(1)/2, 0) == -sqrt(2)/2
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_wigner():
    def tn(a, b):
        return (a - b).n(64) < S('1e-64')
    assert tn(wigner_9j(1, 1, 1, 1, 1, 1, 1, 1, 0, prec=64), S(1)/18)
    assert wigner_9j(3, 3, 2, 3, 3, 2, 3, 3, 2) == 3221*sqrt(
        70)/(246960*sqrt(105)) - 365/(3528*sqrt(70)*sqrt(105))
    assert wigner_6j(5, 5, 5, 5, 5, 5) == Rational(1, 52)
    assert tn(wigner_6j(8, 8, 8, 8, 8, 8, prec=64), -S(12219)/965770)
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_gaunt():
    def tn(a, b):
        return (a - b).n(64) < S('1e-64')
    assert gaunt(1, 0, 1, 1, 0, -1) == -1/(2*sqrt(pi))
    assert tn(gaunt(
        10, 10, 12, 9, 3, -12, prec=64), (-S(98)/62031) * sqrt(6279)/sqrt(pi))
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_racah():
    assert racah(3,3,3,3,3,3) == Rational(-1,14)
    assert racah(2,2,2,2,2,2) == Rational(-3,70)
    assert racah(7,8,7,1,7,7, prec=4).is_Float
    assert racah(5.5,7.5,9.5,6.5,8,9) == -719*sqrt(598)/1158924
    assert abs(racah(5.5,7.5,9.5,6.5,8,9, prec=4) - (-0.01517)) < S('1e-4')
项目:zippy    作者:securesystemslab    | 项目源码 | 文件源码
def test_hydrogen_energies():
    assert E_nl(n, Z) == -Z**2/(2*n**2)
    assert E_nl(n) == -1/(2*n**2)

    assert E_nl(1, 47) == -S(47)**2/(2*1**2)
    assert E_nl(2, 47) == -S(47)**2/(2*2**2)

    assert E_nl(1) == -S(1)/(2*1**2)
    assert E_nl(2) == -S(1)/(2*2**2)
    assert E_nl(3) == -S(1)/(2*3**2)
    assert E_nl(4) == -S(1)/(2*4**2)
    assert E_nl(100) == -S(1)/(2*100**2)

    raises(ValueError, lambda: E_nl(0))