Python tensorflow.python.client.timeline 模块,Timeline() 实例源码

我们从Python开源项目中,提取了以下22个代码示例,用于说明如何使用tensorflow.python.client.timeline.Timeline()

项目:GPflow    作者:GPflow    | 项目源码 | 文件源码
def run(self, fetches, feed_dict=None, options=None, run_metadata=None):
        # Make sure there is no disagreement doing this.
        if options is not None:
            if options.trace_level != self.profiler_options.trace_level:  # pragma: no cover
                raise ValueError(
                    'In profiler session. Inconsistent trace '
                    'level from run call')  # pragma: no cover
            self.profiler_options.update(options)  # pragma: no cover

        self.local_run_metadata = tf.RunMetadata()
        output = super(TracerSession, self).run(
            fetches, feed_dict=feed_dict,
            options=self.profiler_options,
            run_metadata=self.local_run_metadata)

        trace_time = timeline.Timeline(self.local_run_metadata.step_stats)
        ctf = trace_time.generate_chrome_trace_format()
        with open(self._trace_filename(), 'w') as trace_file:
            trace_file.write(ctf)

        if self.each_time:
            self.counter += 1

        return output
项目:lang2program    作者:kelvinguu    | 项目源码 | 文件源码
def run(self, fetches, feed_dict=None):
        """like Session.run, but return a Timeline object in Chrome trace format (JSON).

        Save the json to a file, go to chrome://tracing, and open the file.

        Args:
            fetches
            feed_dict

        Returns:
            dict: a JSON dict
        """
        options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        run_metadata = tf.RunMetadata()
        super(ProfiledSession, self).run(fetches, feed_dict, options=options, run_metadata=run_metadata)

        # Create the Timeline object, and write it to a json
        tl = timeline.Timeline(run_metadata.step_stats)
        ctf = tl.generate_chrome_trace_format()
        return json.loads(ctf)
项目:lang2program    作者:kelvinguu    | 项目源码 | 文件源码
def run(self, fetches, feed_dict=None):
        """like Session.run, but return a Timeline object in Chrome trace format (JSON).

        Save the json to a file, go to chrome://tracing, and open the file.

        Args:
            fetches
            feed_dict

        Returns:
            dict: a JSON dict
        """
        options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        run_metadata = tf.RunMetadata()
        super(ProfiledSession, self).run(fetches, feed_dict, options=options, run_metadata=run_metadata)

        # Create the Timeline object, and write it to a json
        tl = timeline.Timeline(run_metadata.step_stats)
        ctf = tl.generate_chrome_trace_format()
        return json.loads(ctf)
项目:RNN-TrajModel    作者:wuhao5688    | 项目源码 | 文件源码
def step(self, sess, batch, eval_op=None):
    """
    One step for a batch
    Either sgd training by setting `eval_op` to `self.update_op` or only evaluate the loss by leaving it to be `None`
    :param sess: a tensorflow session
    :param batch: a Batch object
    :param eval_op: an operator in tensorflow
    :return: vals: dict containing the values evaluated by `sess.run()`
    """
    feed_dict = self.feed(batch)
    fetch_dict = self.fetch(eval_op)
    # run sess
    vals = sess.run(fetch_dict, feed_dict, options=self.config.run_options, run_metadata=self.config.run_metadata)
    # trace time consumption
    # very slow and requires large memory
    if self.config.time_trace:
      tl = timeline.Timeline(self.config.run_metadata.step_stats)
      ctf = tl.generate_chrome_trace_format()
      with open(self.config.trace_filename, 'w') as f:
        f.write(ctf)
        print("time tracing output to " + self.config.trace_filename)
    return vals
项目:stuff    作者:yaroslavvb    | 项目源码 | 文件源码
def traced_run(fetches):
  """Runs fetches, dumps timeline files in current directory."""
  global sess
  assert sess
  global timeline_counter
  run_metadata = tf.RunMetadata()

  root = os.getcwd()+"/data"
  from tensorflow.python.client import timeline

  results = sess.run(fetches,
                     options=run_options,
                     run_metadata=run_metadata);
  tl = timeline.Timeline(step_stats=run_metadata.step_stats)
  ctf = tl.generate_chrome_trace_format(show_memory=True,
                                          show_dataflow=False)
  open(root+"/timeline_%d.json"%(timeline_counter,), "w").write(ctf)
  open(root+"/stepstats_%d.pbtxt"%(timeline_counter,), "w").write(str(
    run_metadata.step_stats))
  timeline_counter+=1
  return results
项目:stuff    作者:yaroslavvb    | 项目源码 | 文件源码
def sessrun(*args, **kwargs):
  sess = u.get_default_session()
  if not GLOBAL_PROFILE:
    return sess.run(*args, **kwargs)

  run_metadata = tf.RunMetadata()

  kwargs['options'] = full_trace_options
  kwargs['run_metadata'] = run_metadata
  result = sess.run(*args, **kwargs)
  first_entry = args[0]
  if isinstance(first_entry, list):
    if len(first_entry) == 0 and len(args) == 1:
      return None
    first_entry = first_entry[0]
  name = first_entry.name
  name = name.replace('/', '-')

  tl = timeline.Timeline(run_metadata.step_stats)
  ctf = tl.generate_chrome_trace_format()
  with open('timelines/%s.json'%(name,), 'w') as f:
    f.write(ctf)
  with open('timelines/%s.pbtxt'%(name,), 'w') as f:
    f.write(str(run_metadata))
  return result
项目:stuff    作者:yaroslavvb    | 项目源码 | 文件源码
def traced_run(fetches):
    """Runs fetches, dumps timeline files in current directory."""

    from tensorflow.python.client import timeline

    global timeline_counter
    run_metadata = tf.RunMetadata()

    results = sess.run(fetches,
                       options=run_options,
                       run_metadata=run_metadata);
    tl = timeline.Timeline(step_stats=run_metadata.step_stats)
    ctf = tl.generate_chrome_trace_format(show_memory=True,
                                          show_dataflow=False)
    open("timeline_%d.json"%(timeline_counter,), "w").write(ctf)
    open("stepstats_%d.pbtxt"%(timeline_counter,), "w").write(str(
        run_metadata.step_stats))
    timeline_counter+=1
    return results
项目:albemarle    作者:SeanTater    | 项目源码 | 文件源码
def train_it(sess, step=1):
    _pat_chars_i, _pat_lens = get_batch(__batch_size)
    inputs = {
        pat_chars_i: _pat_chars_i,
        pat_lens: _pat_lens}

    # Run optimization op (backprop)
    #run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    #run_metadata = tf.RunMetadata()
    #sess.run(optimizer, feed_dict=inputs, options=run_options, run_metadata=run_metadata)
    sess.run(optimizer, feed_dict=inputs)
    #with open('timeline.json', 'w') as f:
    #    f.write(
    #        timeline.Timeline(run_metadata.step_stats)
    #            .generate_chrome_trace_format())

    if step % display_step == 0:
        # Calculate batch loss
        cost_f = sess.run(cost, feed_dict=inputs)
        print ("Iter {}, cost= {:.6f}".format(
            str(step*__batch_size), cost_f))
项目:tefla    作者:openAGI    | 项目源码 | 文件源码
def after_run(self, _run_context, run_values):
        if not self.is_chief or self._done:
            return

        step_done = run_values.results
        if self._active:
            log.info("Captured full trace at step %s", step_done)
            # Create output directory
            gfile.MakeDirs(self._output_dir)

            # Save run metadata
            trace_path = os.path.join(self._output_dir, "run_meta")
            with gfile.GFile(trace_path, "wb") as trace_file:
                trace_file.write(run_values.run_metadata.SerializeToString())
                log.info("Saved run_metadata to %s", trace_path)

            # Save timeline
            timeline_path = os.path.join(self._output_dir, "timeline.json")
            with gfile.GFile(timeline_path, "w") as timeline_file:
                tl_info = timeline.Timeline(run_values.run_metadata.step_stats)
                tl_chrome = tl_info.generate_chrome_trace_format(
                    show_memory=True)
                timeline_file.write(tl_chrome)
                log.info("Saved timeline to %s", timeline_path)

            # Save tfprof op log
            tf.profiler.write_op_log(
                graph=tf.get_default_graph(),
                log_dir=self._output_dir,
                run_meta=run_values.run_metadata)
            log.info("Saved op log to %s", self._output_dir)
            self._active = False
            self._done = True

        self._active = (step_done >= self.params["step"])
项目:stuff    作者:yaroslavvb    | 项目源码 | 文件源码
def traced_run(fetches):
  """Runs fetches, dumps timeline files in current directory."""

  global timeline_counter
  run_metadata = tf.RunMetadata()

  config = load_config()
  log_fn = "%s-%s-%s"%(config.task_type, config.task_id, timeline_counter)
  sess = tf.get_default_session()

  root = os.getcwd()+"/data"
  os.system('mkdir -p '+root)

  from tensorflow.python.client import timeline

  results = sess.run(fetches,
                     options=run_options,
                     run_metadata=run_metadata);
  tl = timeline.Timeline(step_stats=run_metadata.step_stats)
  ctf = tl.generate_chrome_trace_format(show_memory=True,
                                          show_dataflow=False)
  open(root+"/timeline_%s.json"%(log_fn,), "w").write(ctf)
  open(root+"/stepstats_%s.pbtxt"%(log_fn,), "w").write(str(
    run_metadata.step_stats))
  timeline_counter+=1
  return results
项目:dizzy_layer    作者:Pastromhaug    | 项目源码 | 文件源码
def run_shit():
    sess = tf.Session()
    run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    run_metadata = tf.RunMetadata()
    sess.run(tf.initialize_all_variables())
    train_step_ = sess.run([train_step], options=run_options, run_metadata=run_metadata,
                )#feed_dict={x: [[2,3],[5,1]]})

    tl = timeline.Timeline(run_metadata.step_stats)
    ctf = tl.generate_chrome_trace_format()
    with open('o_100.json', 'w') as f:
        f.write(ctf)
项目:dizzy_layer    作者:Pastromhaug    | 项目源码 | 文件源码
def train_network(num_epochs, num_steps, state_size=4):
    sess.run(tf.initialize_all_variables())
    # print("---  min for  graph building ---",(time.time() - start_time)/60.0)
    # start_time = time.time()
    training_losses = []

    #  X_test, Y_test = genTestData(num_steps, num_test_runs, num_classes)
    X_test, Y_test = getTestData()

    for idx, (X_epoch,Y_epoch) in enumerate(genEpochs(num_epochs, num_batches, num_steps, batch_size, num_classes, copy_len)):
        training_loss = 0
        acc = 0
        training_state = [np.zeros((batch_size, state_size)) for i in range(num_stacked)]

        print("EPOCH %d" % idx)
        for batch in tqdm(range(len(X_epoch))):
            X = X_epoch[batch]
            Y = Y_epoch[batch]

            (train_step_, loss_, train_summary_) = sess.run([train_step, loss, train_summary],
                              feed_dict={x:X, y:Y},
                              options=run_options, run_metadata=run_metadata)

            training_loss += loss_
            train_writer.add_summary(train_summary_, idx)

        (test_loss, test_summary_, accuracy_) = sess.run(
            [loss, test_summary, accuracy],
            feed_dict={x:X_test, y:Y_test},
            options=run_options, run_metadata=run_metadata)
        train_writer.add_summary(test_summary_, idx)

        training_loss = training_loss/num_batches
        print("train loss:", training_loss, "test loss:", test_loss, "test accuracy:", accuracy_)
        training_loss = 0

    tl = timeline.Timeline(run_metadata.step_stats)
    ctf = tl.generate_chrome_trace_format()
    with open('timeline_add.json', 'w') as f:
        f.write(ctf)
项目:master-thesis    作者:AndreasMadsen    | 项目源码 | 文件源码
def basic_train(loss_op, update_op,
                profile=0, save_dir='asset/unamed',
                **kwargs):
    profile_state = _ShouldProfile(profile)

    @stf.sg_train_func
    def train_func(sess, arg):
        profile_state.increment()

        if profile_state.should_profile():
            options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
            run_metadata = tf.RunMetadata()
        else:
            options = None
            run_metadata = None

        loss = sess.run([loss_op] + update_op,
                        options=options,
                        run_metadata=run_metadata)[0]

        if profile_state.should_profile():
            tl = tf_timeline.Timeline(run_metadata.step_stats)
            ctf = tl.generate_chrome_trace_format()
            with open(path.join(save_dir, 'timeline.json'), 'w') as fd:
                print(ctf, file=fd)

        return loss

    # run train function
    train_func(save_dir=save_dir, **kwargs)
项目:tag_srl    作者:danfriedman0    | 项目源码 | 文件源码
def run_training_batch(self, session, batch):
        """
        A batch contains input tensors for words, pos, lemmas, preds,
          preds_idx, and labels (in that order)
        Runs the model on the batch (through train_op if train=True)
        Returns the loss
        """
        feed_dict = self.batch_to_feed(batch)
        feed_dict[self.use_dropout_placeholder] = 1.0
        fetches = [self.loss, self.train_op]

        # options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        # run_metadata = tf.RunMetadata()

        loss, _ = session.run(fetches, feed_dict=feed_dict)
        # loss, _ = session.run(fetches,
        #                       feed_dict=feed_dict,
        #                       options=options,
        #                       run_metadata=run_metadata)

        # fetched_timeline = timeline.Timeline(run_metadata.step_stats)
        # chrome_trace = fetched_timeline.generate_chrome_trace_format()
        # with open('timeline.json', 'w') as f:
        #     f.write(chrome_trace)

        return loss
项目:alternating-reader-tf    作者:nschuc    | 项目源码 | 文件源码
def trace(config, sess, model, train_data):
    run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    run_metadata = tf.RunMetadata()

    X, Q, Y = random_batch(*train_data, config.batch_size)
    model.batch_fit(X, Q, Y, learning_rate, run_options, run_metadata)
    train_writer.add_run_metadata(run_metadata, 'step%d' % step)

    from tensorflow.python.client import timeline
    tl = timeline.Timeline(run_metadata.step_stats)
    ctf = tl.generate_chrome_trace_format()
    with open('timeline.json', 'w') as f:
        f.write(ctf)
    return
项目:benchmarks    作者:tensorflow    | 项目源码 | 文件源码
def benchmark_one_step(sess,
                       fetches,
                       step,
                       batch_size,
                       step_train_times,
                       trace_filename,
                       image_producer,
                       params,
                       summary_op=None):
  """Advance one step of benchmarking."""
  if trace_filename and step == -1:
    run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    run_metadata = tf.RunMetadata()
  else:
    run_options = None
    run_metadata = None
  summary_str = None
  start_time = time.time()
  if summary_op is None:
    results = sess.run(fetches, options=run_options, run_metadata=run_metadata)
  else:
    (results, summary_str) = sess.run(
        [fetches, summary_op], options=run_options, run_metadata=run_metadata)

  if not params.forward_only:
    lossval = results['total_loss']
  else:
    lossval = 0.
  image_producer.notify_image_consumption()
  train_time = time.time() - start_time
  step_train_times.append(train_time)
  if step >= 0 and (step == 0 or (step + 1) % params.display_every == 0):
    log_str = '%i\t%s\t%.3f' % (
        step + 1, get_perf_timing_str(batch_size, step_train_times), lossval)
    if 'top_1_accuracy' in results:
      log_str += '\t%.3f\t%.3f' % (results['top_1_accuracy'],
                                   results['top_5_accuracy'])
    log_fn(log_str)
  if trace_filename and step == -1:
    log_fn('Dumping trace to %s' % trace_filename)
    trace = timeline.Timeline(step_stats=run_metadata.step_stats)
    with gfile.Open(trace_filename, 'w') as trace_file:
      trace_file.write(trace.generate_chrome_trace_format(show_memory=True))
  return summary_str
项目:stuff    作者:yaroslavvb    | 项目源码 | 文件源码
def benchmark_one_step(sess,
                       fetches,
                       step,
                       batch_size,
                       step_train_times,
                       trace_filename,
                       image_producer,
                       params,
                       summary_op=None):
  """Advance one step of benchmarking."""
  if trace_filename is not None and step == -1:
    run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    run_metadata = tf.RunMetadata()
  else:
    run_options = None
    run_metadata = None
  summary_str = None
  start_time = time.time()
  if summary_op is None:
    results = sess.run(fetches, options=run_options, run_metadata=run_metadata)
  else:
    (results, summary_str) = sess.run(
        [fetches, summary_op], options=run_options, run_metadata=run_metadata)

  if not params.forward_only:
    lossval = results['total_loss']
  else:
    lossval = 0.
  image_producer.notify_image_consumption()
  train_time = time.time() - start_time
  step_train_times.append(train_time)
  if step >= 0 and (step == 0 or (step + 1) % params.display_every == 0):
    log_str = '%i\t%s\t%.3f' % (
        step + 1, get_perf_timing_str(batch_size, step_train_times), lossval)
    if 'top_1_accuracy' in results:
      log_str += '\t%.3f\t%.3f' % (results['top_1_accuracy'],
                                   results['top_5_accuracy'])
    log_fn(log_str)
  if trace_filename is not None and step == -1:
    log_fn('Dumping trace to %s' % trace_filename)
    trace = timeline.Timeline(step_stats=run_metadata.step_stats)
    with gfile.Open(trace_filename, 'w') as trace_file:
      trace_file.write(trace.generate_chrome_trace_format(show_memory=True))
  return summary_str
项目:dizzy_layer    作者:Pastromhaug    | 项目源码 | 文件源码
def train_network(num_epochs, num_steps, state_size=4):
    sess.run(tf.initialize_all_variables())
    # print("---  min for  graph building ---",(time.time() - start_time)/60.0)
    # start_time = time.time()
    training_losses = []

    #  X_test, Y_test = genTestData(num_steps, num_test_runs, num_classes)
    X_test, Y_test = getTestData()

    for idx, (X_epoch,Y_epoch) in enumerate(genEpochs(num_epochs, num_data_points, num_steps, batch_size, num_classes)):
        training_loss = 0
        acc = 0
        num_batches = 0
        training_state = [np.zeros((batch_size, state_size)) for i in range(num_stacked)]

        print("EPOCH %d" % idx)
        for batch in range(len(X_epoch)):
            X = X_epoch[batch]
            Y = Y_epoch[batch]

            (train_step_, loss_, train_summary_) = sess.run([train_step, loss, train_summary],
                              feed_dict={x:X, y:Y},
                              options=run_options, run_metadata=run_metadata)

            training_loss += loss_
            train_writer.add_summary(train_summary_, idx)
            num_batches += 1

        (test_loss, test_summary_, accuracy_) = sess.run(
            [loss, test_summary, accuracy],
            feed_dict={x:X_test, y:Y_test},
            options=run_options, run_metadata=run_metadata)
        train_writer.add_summary(test_summary_, idx)

        training_loss = training_loss/num_batches
        print("train loss:", training_loss, "test loss:", test_loss, "test accuracy:", accuracy_)
        training_loss = 0

    tl = timeline.Timeline(run_metadata.step_stats)
    ctf = tl.generate_chrome_trace_format()
    with open('timeline_add.json', 'w') as f:
        f.write(ctf)
项目:dizzy_layer    作者:Pastromhaug    | 项目源码 | 文件源码
def train_network(num_epochs, num_steps, state_size=4):
    # with tf.Session() as sess:


    sess.run(tf.initialize_all_variables())
    # print("---  min for  graph building ---",(time.time() - start_time)/60.0)
    # start_time = time.time()
    training_losses = []

    # (test_X_epoch,test_Y_epoch) = genData(num_data_points, num_steps, batch_size)
    test_X_epoch,test_Y_epoch = getTestData()


    for idx, (X_epoch,Y_epoch) in enumerate(genEpochs(num_epochs, num_data_points, num_steps, batch_size)):

        training_loss = 0
        num_batches = 0
        print("EPOCH %d" % idx)
        for batch in range(len(X_epoch)):
            X = X_epoch[batch]
            Y = Y_epoch[batch]
            (train_step_, loss_, summary_, prediction_) = sess.run([train_step, loss, summary, prediction],
                              feed_dict={x:X, y:Y},
                              options=run_options, run_metadata=run_metadata)

            training_loss += loss_
            train_writer.add_summary(summary_, idx)
            num_batches += 1

        test_loss = 0
        test_num_batches = 0
        for test_batch in range(len(test_X_epoch)):
            X_test = test_X_epoch[test_batch]
            Y_test = test_Y_epoch[test_batch]
            (test_loss_, test_loss_summary_) = sess.run([loss, test_loss_summary],
                feed_dict={x:X_test, y:Y_test},
                options=run_options, run_metadata=run_metadata)
            test_loss += test_loss_
            train_writer.add_summary(test_loss_summary_, idx)
            test_num_batches += 1

        test_loss = test_loss/test_num_batches
        training_loss = training_loss/num_batches
        print("train loss:", training_loss, "test loss", test_loss)
        training_loss = 0
        test_loss = 0

    # tl = timeline.Timeline(run_metadata.step_stats)
    # ctf = tl.generate_chrome_trace_format()
    # with open('./timelines/additionV2.json', 'w') as f:
    #     f.write(ctf)
项目:ray    作者:ray-project    | 项目源码 | 文件源码
def load_data(self, sess, inputs, full_trace=False):
        """Bulk loads the specified inputs into device memory.

        The shape of the inputs must conform to the shapes of the input
        placeholders this optimizer was constructed with.

        The data is split equally across all the devices. If the data is not
        evenly divisible by the batch size, excess data will be discarded.

        Args:
            sess: TensorFlow session.
            inputs: List of Tensors matching the input placeholders specified
                at construction time of this optimizer.
            full_trace: Whether to profile data loading.

        Returns:
            The number of tuples loaded per device.
        """

        feed_dict = {}
        assert len(self.input_placeholders) == len(inputs)
        for ph, arr in zip(self.input_placeholders, inputs):
            truncated_arr = make_divisible_by(arr, self.batch_size)
            feed_dict[ph] = truncated_arr
            truncated_len = len(truncated_arr)

        if full_trace:
            run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        else:
            run_options = tf.RunOptions(trace_level=tf.RunOptions.NO_TRACE)
        run_metadata = tf.RunMetadata()

        sess.run(
            [t.init_op for t in self._towers],
            feed_dict=feed_dict,
            options=run_options,
            run_metadata=run_metadata)
        if full_trace:
            trace = timeline.Timeline(step_stats=run_metadata.step_stats)
            trace_file = open(os.path.join(self.logdir, "timeline-load.json"),
                              "w")
            trace_file.write(trace.generate_chrome_trace_format())

        tuples_per_device = truncated_len / len(self.devices)
        assert tuples_per_device > 0, \
            "Too few tuples per batch, trying increasing the training " \
            "batch size or decreasing the sgd batch size. Tried to split up " \
            "{} rows {}-ways in batches of {} (total across devices).".format(
                len(arr), len(self.devices), self.batch_size)
        assert tuples_per_device % self.per_device_batch_size == 0
        return tuples_per_device
项目:ray    作者:ray-project    | 项目源码 | 文件源码
def optimize(self, sess, batch_index, extra_ops=[], extra_feed_dict={},
                 file_writer=None):
        """Run a single step of SGD.

        Runs a SGD step over a slice of the preloaded batch with size given by
        self.per_device_batch_size and offset given by the batch_index
        argument.

        Updates shared model weights based on the averaged per-device
        gradients.

        Args:
            sess: TensorFlow session.
            batch_index: Offset into the preloaded data. This value must be
                between `0` and `tuples_per_device`. The amount of data to
                process is always fixed to `per_device_batch_size`.
            extra_ops: Extra ops to run with this step (e.g. for metrics).
            extra_feed_dict: Extra args to feed into this session run.
            file_writer: If specified, tf metrics will be written out using
                this.

        Returns:
            The outputs of extra_ops evaluated over the batch.
        """

        if file_writer:
            run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        else:
            run_options = tf.RunOptions(trace_level=tf.RunOptions.NO_TRACE)
        run_metadata = tf.RunMetadata()

        feed_dict = {self._batch_index: batch_index}
        feed_dict.update(extra_feed_dict)
        outs = sess.run(
            [self._train_op] + extra_ops,
            feed_dict=feed_dict,
            options=run_options,
            run_metadata=run_metadata)

        if file_writer:
            trace = timeline.Timeline(step_stats=run_metadata.step_stats)
            trace_file = open(os.path.join(self.logdir, "timeline-sgd.json"),
                              "w")
            trace_file.write(trace.generate_chrome_trace_format())
            file_writer.add_run_metadata(
                run_metadata, "sgd_train_{}".format(batch_index))

        return outs[1:]
项目:ActionVLAD    作者:rohitgirdhar    | 项目源码 | 文件源码
def train_step(sess, train_op, global_step, train_step_kwargs):
  """Function that takes a gradient step and specifies whether to stop.
  Args:
    sess: The current session.
    train_op: A dictionary of `Operation` that evaluates the gradients and returns the
      total loss (for first) in case of iter_size > 1.
    global_step: A `Tensor` representing the global training step.
    train_step_kwargs: A dictionary of keyword arguments.
  Returns:
    The total loss and a boolean indicating whether or not to stop training.
  """
  start_time = time.time()
  if FLAGS.iter_size == 1:
    # for debugging specific endpoint values,
    # set the train file to one image and use
    # pdb here
    # import pdb
    # pdb.set_trace()
    if FLAGS.profile_iterations:
      run_options = tf.RunOptions(
          trace_level=tf.RunOptions.FULL_TRACE)
      run_metadata = tf.RunMetadata()
      total_loss, np_global_step = sess.run([train_op, global_step],
          options=run_options,
          run_metadata=run_metadata)
      tl = timeline.Timeline(run_metadata.step_stats)
      ctf = tl.generate_chrome_trace_format()
      with open(os.path.join(FLAGS.train_dir,
                             'timeline_%08d.json' % np_global_step), 'w') as f:
        f.write(ctf)
    else:
      total_loss, np_global_step = sess.run([train_op, global_step])
  else:
    for j in range(FLAGS.iter_size-1):
      sess.run([train_op[j]])
    total_loss, np_global_step = sess.run(
        [train_op[FLAGS.iter_size-1], global_step])
  time_elapsed = time.time() - start_time

  if 'should_log' in train_step_kwargs:
    if sess.run(train_step_kwargs['should_log']):
      logging.info('%s: global step %d: loss = %.4f (%.2f sec)',
                   datetime.now(), np_global_step, total_loss, time_elapsed)

  if 'should_stop' in train_step_kwargs:
    should_stop = sess.run(train_step_kwargs['should_stop'])
  else:
    should_stop = False

  return total_loss, should_stop