Python tensorflow.python.framework.dtypes 模块,as_dtype() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用tensorflow.python.framework.dtypes.as_dtype()

项目:PyFaceRecognizer    作者:Hironsan    | 项目源码 | 文件源码
def __init__(self,
                 images,
                 labels,
                 dtype=dtypes.float32,
                 reshape=True):

        dtype = dtypes.as_dtype(dtype).base_dtype
        if dtype not in (dtypes.uint8, dtypes.float32):
            raise TypeError('Invalid image dtype %r, expected uint8 or float32' %dtype)

        self._num_examples = images.shape[0]

        if dtype == dtypes.float32:
            # Convert from [0, 255] -> [0.0, 1.0].
            images = images.astype(np.float32)
            images = np.multiply(images, 1.0 / 255.0)
        self._images = images
        self._labels = labels
        self._epochs_completed = 0
        self._index_in_epoch = 0
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def input_builder(self):
    """Builds inputs in the graph.

    Returns:
      Two placeholders for inputs and outputs.
    """
    input_shape = [None] + self.input_shape[1:]
    self._input_placeholder = array_ops.placeholder(
        dtypes.as_dtype(self._input_dtype),
        input_shape,
        name='input')
    if self.output_shape is None:
      self._output_placeholder = None
    else:
      output_shape = [None] + self.output_shape[1:]
      self._output_placeholder = array_ops.placeholder(
          dtypes.as_dtype(self._output_dtype),
          output_shape,
          name='output')
    return self._input_placeholder, self._output_placeholder
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def __init__(self, shape, dtype, verify_pd=True, name="OperatorPDIdentity"):
    """Initialize an `OperatorPDIdentity`.

    Args:
      shape:  `int32` rank 1 `Tensor` of length at least 2, and with the last
        two entries equal (since this is a square matrix).
      dtype:  Data type of the matrix that this operator represents.
      verify_pd:  `Boolean`, if `True`, asserts are added to the initialization
        args to ensure they define this operator as a square (batch) matrix.
      name:  Name to prepend to `Ops`.
    """

    # Grab static shape if available now.
    with ops.name_scope(name):
      with ops.name_scope("init", values=[shape]):
        self._dtype = dtypes.as_dtype(dtype)
        self._verify_pd = verify_pd
        self._name = name

        # Store the static shape (if possible) right now before adding the
        # asserts, since the asserts prevent .constant_value from working.
        shape = ops.convert_to_tensor(shape, name="shape")
        self._get_shape = tensor_shape.TensorShape(
            tensor_util.constant_value(shape))
        self._shape_arg = self._check_shape(shape)
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def __init__(self, shape, dtype, verify_pd=True, name="OperatorPDIdentity"):
    """Initialize an `OperatorPDIdentity`.

    Args:
      shape:  `int32` rank 1 `Tensor` of length at least 2, and with the last
        two entries equal (since this is a square matrix).
      dtype:  Data type of the matrix that this operator represents.
      verify_pd:  `Boolean`, if `True`, asserts are added to the initialization
        args to ensure they define this operator as a square (batch) matrix.
      name:  Name to prepend to `Ops`.
    """

    # Grab static shape if available now.
    with ops.name_scope(name):
      with ops.name_scope("init", values=[shape]):
        self._dtype = dtypes.as_dtype(dtype)
        self._verify_pd = verify_pd
        self._name = name

        # Store the static shape (if possible) right now before adding the
        # asserts, since the asserts prevent .constant_value from working.
        shape = ops.convert_to_tensor(shape, name="shape")
        self._get_shape = tensor_shape.TensorShape(
            tensor_util.constant_value(shape))
        self._shape_arg = self._check_shape(shape)
项目:imperative    作者:yaroslavvb    | 项目源码 | 文件源码
def constant(self, values, dtype=None, shape=None, name="Const"):
    """Imperative specific implementation of constant-op."""

    np_dtype = None

    # Convert numpy dtype to TensorFlow dtype if needed
    if dtype:
      try:
        dtype = dtypes.as_dtype(dtype)
        np_dtype = dtype.as_numpy_dtype
      except TypeError as exc:
        raise TypeError("Trying to create constant with dtype=%s, "
                        "got TypeError(%s)" % (dtype, exc.message))

    # Native TensorFlow has special handling for TensorProto initialized with
    # a scalar and non-empty shape. For feature parity with TensorFlow we
    # handle this case by tiling the constant explicitly.
    if isinstance(values, numbers.Number) and shape:
      data_array = values*np.ones(shape=shape, dtype=np_dtype)
      return self.numpy_to_itensor(data_array,
                                   dtype=dtype, shape=shape)

    return self.numpy_to_itensor(values, dtype, shape)
项目:Text-Classification-with-Tensorflow    作者:jrzaurin    | 项目源码 | 文件源码
def __init__(self,documents,labels,dtype=dtypes.float32,seed=None):

        seed1, seed2 = random_seed.get_seed(seed)
        np.random.seed(seed1 if seed is None else seed2)

        dtype = dtypes.as_dtype(dtype).base_dtype
        if dtype not in (dtypes.uint8, dtypes.float32):
          raise TypeError('Invalid dtype %r, expected uint8 or float32' % dtype)

        assert documents.shape[0] == labels.shape[0], (
            'documents.shape: %s labels.shape: %s' % (documents.shape, labels.shape))

        self._num_examples = documents.shape[0]
        self._documents = documents
        self._labels = labels
        self._epochs_completed = 0
        self._index_in_epoch = 0
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def random_positive_definite_matrix(shape, dtype, force_well_conditioned=False):
  """[batch] positive definite matrix.

  Args:
    shape:  `TensorShape` or Python list.  Shape of the returned matrix.
    dtype:  `TensorFlow` `dtype` or Python dtype.
    force_well_conditioned:  Python bool.  If `True`, returned matrix has
      eigenvalues with modulus in `(1, 4)`.  Otherwise, eigenvalues are
      chi-squared random variables.

  Returns:
    `Tensor` with desired shape and dtype.
  """
  dtype = dtypes.as_dtype(dtype)
  if not contrib_tensor_util.is_tensor(shape):
    shape = tensor_shape.TensorShape(shape)
    # Matrix must be square.
    shape[-1].assert_is_compatible_with(shape[-2])

  with ops.name_scope("random_positive_definite_matrix"):
    tril = random_tril_matrix(
        shape, dtype, force_well_conditioned=force_well_conditioned)
    return math_ops.matmul(tril, tril, adjoint_b=True)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def _AssertDynamicStitchResultIs(self, indices, data, expected):
    with self.test_session() as session:
      index_placeholders = [
          array_ops.placeholder(dtypes.as_dtype(arg.dtype)) for arg in indices
      ]
      data_placeholders = [
          array_ops.placeholder(dtypes.as_dtype(arg.dtype)) for arg in data
      ]
      with self.test_scope():
        output = data_flow_ops.dynamic_stitch(index_placeholders,
                                              data_placeholders)

      feed_dict = {}
      for placeholder, value in zip(index_placeholders, indices):
        feed_dict[placeholder] = value
      for placeholder, value in zip(data_placeholders, data):
        feed_dict[placeholder] = value
      result = session.run(output, feed_dict=feed_dict)
      self.assertAllClose(expected, result, rtol=1e-3)
项目:cloudml-samples    作者:GoogleCloudPlatform    | 项目源码 | 文件源码
def __init__(self,
               images,
               labels,
               start_id=0,
               fake_data=False,
               one_hot=False,
               dtype=dtypes.float32):
    """Construct a DataSet.
    one_hot arg is used only if fake_data is true.  `dtype` can be either
    `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
    `[0, 1]`.
    """
    dtype = dtypes.as_dtype(dtype).base_dtype
    if dtype not in (dtypes.uint8, dtypes.float32):
      raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                      dtype)
    if fake_data:
      self._num_examples = 10000
      self.one_hot = one_hot
    else:
      assert images.shape[0] == labels.shape[0], (
          'images.shape: %s labels.shape: %s' % (images.shape, labels.shape))
      self._num_examples = images.shape[0]

      # Convert shape from [num examples, rows, columns, depth]
      # to [num examples, rows*columns] (assuming depth == 1)
      assert images.shape[3] == 1
      images = images.reshape(images.shape[0],
                              images.shape[1] * images.shape[2])
      if dtype == dtypes.float32:
        # Convert from [0, 255] -> [0.0, 1.0].
        images = images.astype(numpy.float32)
        images = numpy.multiply(images, 1.0 / 255.0)
    self._ids = numpy.arange(start_id, start_id + self._num_examples)
    self._images = images
    self._labels = labels
    self._epochs_completed = 0
    self._index_in_epoch = 0
项目:tensorflow_mnist_cloudml    作者:mainyaa    | 项目源码 | 文件源码
def __init__(self,
               images,
               labels,
               start_id=0,
               fake_data=False,
               one_hot=False,
               dtype=dtypes.float32):
    """Construct a DataSet.
    one_hot arg is used only if fake_data is true.  `dtype` can be either
    `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
    `[0, 1]`.
    """
    dtype = dtypes.as_dtype(dtype).base_dtype
    if dtype not in (dtypes.uint8, dtypes.float32):
      raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                      dtype)
    if fake_data:
      self._num_examples = 10000
      self.one_hot = one_hot
    else:
      assert images.shape[0] == labels.shape[0], (
          'images.shape: %s labels.shape: %s' % (images.shape, labels.shape))
      self._num_examples = images.shape[0]

      # Convert shape from [num examples, rows, columns, depth]
      # to [num examples, rows*columns] (assuming depth == 1)
      assert images.shape[3] == 1
      images = images.reshape(images.shape[0],
                              images.shape[1] * images.shape[2])
      if dtype == dtypes.float32:
        # Convert from [0, 255] -> [0.0, 1.0].
        images = images.astype(numpy.float32)
        images = numpy.multiply(images, 1.0 / 255.0)
    self._ids = numpy.arange(start_id, start_id + self._num_examples)
    self._images = images
    self._labels = labels
    self._epochs_completed = 0
    self._index_in_epoch = 0
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def convert_to_tensor_or_sparse_tensor(
    value, dtype=None, name=None, as_ref=False):
  """Converts value to a `SparseTensor` or `Tensor`.

  Args:
    value: A `SparseTensor`, `SparseTensorValue`, or an object whose type has a
      registered `Tensor` conversion function.
    dtype: Optional element type for the returned tensor. If missing, the
      type is inferred from the type of `value`.
    name: Optional name to use if a new `Tensor` is created.
    as_ref: True if we want the result as a ref tensor. Only used if a new
      `Tensor` is created.

  Returns:
    A `SparseTensor` or `Tensor` based on `value`.

  Raises:
    RuntimeError: If result type is incompatible with `dtype`.
  """
  if dtype is not None:
    dtype = dtypes.as_dtype(dtype)
  if isinstance(value, ops.SparseTensorValue):
    value = ops.SparseTensor.from_value(value)
  if isinstance(value, ops.SparseTensor):
    if dtype and not dtype.is_compatible_with(value.dtype):
      raise RuntimeError(
          'Sparse dtype: requested = %s, actual = %s' % (
              dtype.name, value.dtype.name))
    return value
  return ops.convert_to_tensor(value, dtype=dtype, name=name, as_ref=as_ref)
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def __init__(self, key_dtype, value_dtype, name):
    """Construct a lookup table interface.

    Args:
      key_dtype: The table key type.
      value_dtype: The table value type.
      name: A name for the operation (optional).
    """
    self._key_dtype = dtypes.as_dtype(key_dtype)
    self._value_dtype = dtypes.as_dtype(value_dtype)
    self._name = name
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def __init__(self, key_dtype, value_dtype):
    """Construct a table initializer object.

    Args:
      key_dtype: Type of the table keys.
      value_dtype: Type of the table values.
    """
    self._key_dtype = dtypes.as_dtype(key_dtype)
    self._value_dtype = dtypes.as_dtype(value_dtype)
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def _check_dtype(dtype):
  if dtypes.as_dtype(dtype) == dtypes.float64:
    logging.warn(
        'float64 is not supported by many models, consider casting to float32.')
  return dtype
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def convert_to_tensor_or_sparse_tensor(
    value, dtype=None, name=None, as_ref=False):
  """Converts value to a `SparseTensor` or `Tensor`.

  Args:
    value: A `SparseTensor`, `SparseTensorValue`, or an object whose type has a
      registered `Tensor` conversion function.
    dtype: Optional element type for the returned tensor. If missing, the
      type is inferred from the type of `value`.
    name: Optional name to use if a new `Tensor` is created.
    as_ref: True if we want the result as a ref tensor. Only used if a new
      `Tensor` is created.

  Returns:
    A `SparseTensor` or `Tensor` based on `value`.

  Raises:
    RuntimeError: If result type is incompatible with `dtype`.
  """
  if dtype is not None:
    dtype = dtypes.as_dtype(dtype)
  if isinstance(value, sparse_tensor.SparseTensorValue):
    value = sparse_tensor.SparseTensor.from_value(value)
  if isinstance(value, sparse_tensor.SparseTensor):
    if dtype and not dtype.is_compatible_with(value.dtype):
      raise RuntimeError(
          'Sparse dtype: requested = %s, actual = %s' % (
              dtype.name, value.dtype.name))
    return value
  return ops.convert_to_tensor(value, dtype=dtype, name=name, as_ref=as_ref)
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def __init__(self, key_dtype, value_dtype, name):
    """Construct a lookup table interface.

    Args:
      key_dtype: The table key type.
      value_dtype: The table value type.
      name: A name for the operation (optional).
    """
    self._key_dtype = dtypes.as_dtype(key_dtype)
    self._value_dtype = dtypes.as_dtype(value_dtype)
    self._name = name
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def __init__(self, key_dtype, value_dtype):
    """Construct a table initializer object.

    Args:
      key_dtype: Type of the table keys.
      value_dtype: Type of the table values.
    """
    self._key_dtype = dtypes.as_dtype(key_dtype)
    self._value_dtype = dtypes.as_dtype(value_dtype)
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def _check_dtype(dtype):
  if dtypes.as_dtype(dtype) == dtypes.float64:
    logging.warn(
        'float64 is not supported by many models, consider casting to float32.')
  return dtype
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def __init__(self,
               images,
               labels,
               fake_data=False,
               one_hot=False,
               dtype=dtypes.float32,
               reshape=True):
    """Construct a DataSet.
    one_hot arg is used only if fake_data is true.  `dtype` can be either
    `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
    `[0, 1]`.
    """
    dtype = dtypes.as_dtype(dtype).base_dtype
    if dtype not in (dtypes.uint8, dtypes.float32):
      raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                      dtype)
    if fake_data:
      self._num_examples = 10000
      self.one_hot = one_hot
    else:
      assert images.shape[0] == labels.shape[0], (
          'images.shape: %s labels.shape: %s' % (images.shape, labels.shape))
      self._num_examples = images.shape[0]

      # Convert shape from [num examples, rows, columns, depth]
      # to [num examples, rows*columns] (assuming depth == 1)
      if reshape:
        assert images.shape[3] == 1
        images = images.reshape(images.shape[0],
                                images.shape[1] * images.shape[2])
      if dtype == dtypes.float32:
        # Convert from [0, 255] -> [0.0, 1.0].
        images = images.astype(numpy.float32)
        images = numpy.multiply(images, 1.0 / 255.0)
    self._images = images
    self._labels = labels
    self._epochs_completed = 0
    self._index_in_epoch = 0
项目:tensorflow-for-poets-2    作者:googlecodelabs    | 项目源码 | 文件源码
def should_quantize_const(self, node):
    if not self.state.output_node_stack:
      return False
    top = self.state.output_node_stack[-1]
    if not top[2]:
      return False
    dtype = dtypes.as_dtype(node.attr["dtype"].type)
    assert dtype == dtypes.float32, (
        "Failed to quantized constant %s of type %s" % (node.name, dtype))
    return True
项目:hasy-experiments    作者:MartinThoma    | 项目源码 | 文件源码
def __init__(self,
                 images,
                 labels,
                 fake_data=False,
                 one_hot=False,
                 dtype=dtypes.float32,
                 reshape=True):
        """
        Construct a DataSet.

        one_hot arg is used only if fake_data is true.  `dtype` can be either
        `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
        `[0, 1]`.
        """
        dtype = dtypes.as_dtype(dtype).base_dtype
        if dtype not in (dtypes.uint8, dtypes.float32):
            raise TypeError(('Invalid image dtype %r, expected uint8 or '
                             'float32') % dtype)
        if fake_data:
            self._num_examples = 10000
            self.one_hot = one_hot
        else:
            assert images.shape[0] == labels.shape[0], (
                'images.shape: %s labels.shape: %s' % (images.shape,
                                                       labels.shape))
            self._num_examples = images.shape[0]

            # Convert shape from [num examples, rows, columns, depth]
            # to [num examples, rows*columns] (assuming depth == 1)
            if reshape:
                assert images.shape[3] == 1
                images = images.reshape(images.shape[0],
                                        images.shape[1] * images.shape[2])
            if dtype == dtypes.float32:
                # Convert from [0, 255] -> [0.0, 1.0].
                images = images.astype(np.float32)
                images = np.multiply(images, 1.0 / 255.0)
        self._images = images
        self._labels = labels
        self._epochs_completed = 0
        self._index_in_epoch = 0
项目:forward    作者:yajun0601    | 项目源码 | 文件源码
def __init__(self,
               images,
               labels,
               fake_data=False,
               one_hot=False,
               dtype=dtypes.float32,
               reshape=True):
    """Construct a DataSet.
    one_hot arg is used only if fake_data is true.  `dtype` can be either
    `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
    `[0, 1]`.
    """
    dtype = dtypes.as_dtype(dtype).base_dtype
    if dtype not in (dtypes.uint8, dtypes.float32):
      raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                      dtype)
    if fake_data:
      self._num_examples = 10000
      self.one_hot = one_hot
    else:
      assert images.shape[0] == labels.shape[0], (
          'images.shape: %s labels.shape: %s' % (images.shape, labels.shape))
      self._num_examples = images.shape[0]

      # Convert shape from [num examples, rows, columns, depth]
      # to [num examples, rows*columns] (assuming depth == 1)
      if reshape:
        assert images.shape[3] == 1
        images = images.reshape(images.shape[0],
                                images.shape[1] * images.shape[2])
      if dtype == dtypes.float32:
        # Convert from [0, 255] -> [0.0, 1.0].
        images = images.astype(numpy.float32)
        images = numpy.multiply(images, 1.0 / 255.0)
    self._images = images
    self._labels = labels
    self._epochs_completed = 0
    self._index_in_epoch = 0
项目:forward    作者:yajun0601    | 项目源码 | 文件源码
def __init__(self,
               images,
               labels,
               fake_data=False,
               one_hot=False,
               dtype=dtypes.float32,
               reshape=True):
    """Construct a DataSet.
    one_hot arg is used only if fake_data is true.  `dtype` can be either
    `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
    `[0, 1]`.
    """
    dtype = dtypes.as_dtype(dtype).base_dtype
    if dtype not in (dtypes.uint8, dtypes.float32):
      raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                      dtype)
    if fake_data:
      self._num_examples = 10000
      self.one_hot = one_hot
    else:
      assert images.shape[0] == labels.shape[0], (
          'images.shape: %s labels.shape: %s' % (images.shape, labels.shape))
      self._num_examples = images.shape[0]

      # Convert shape from [num examples, rows, columns, depth]
      # to [num examples, rows*columns] (assuming depth == 1)
      if reshape:
        assert images.shape[3] == 1
        images = images.reshape(images.shape[0],
                                images.shape[1] * images.shape[2])
      if dtype == dtypes.float32:
        # Convert from [0, 255] -> [0.0, 1.0].
        images = images.astype(numpy.float32)
        images = numpy.multiply(images, 1.0 / 255.0)
    self._images = images
    self._labels = labels
    self._epochs_completed = 0
    self._index_in_epoch = 0
项目:MobileNet    作者:Zehaos    | 项目源码 | 文件源码
def should_quantize_const(self, node):
    if not self.state.output_node_stack:
      return False
    top = self.state.output_node_stack[-1]
    if not top[2]:
      return False
    dtype = dtypes.as_dtype(node.attr["dtype"].type)
    assert dtype == dtypes.float32, (
        "Failed to quantized constant %s of type %s" % (node.name, dtype))
    return True
项目:imperative    作者:yaroslavvb    | 项目源码 | 文件源码
def numpy_to_handle(self, array):
    """Upload numpy array into TensorFlow runtime.

    Args:
      array: numpy array to convert to TensorHandle

    Returns:
      TensorHandle corresponding to given numpy array.
    """

    tf_dtype = dtypes.as_dtype(array.dtype)
    current_device = get_current_device_string(self.g)
    current_device_sanitized = current_device.replace(":", "")
    key = ("numpy_to_handle", tf_dtype.name, current_device)

    if key in self.op_cache:
      holder, handle_op = self.op_cache[key]
    else:
      if self.PRINT_CACHE_MISSES:
        print("Imperative cache miss for %s"%(str(key)))

      op_prefix = "numpy_to_handle.%s.%s" % (tf_dtype.name,
                                             current_device_sanitized)
      with self.g.as_default():
        holder = array_ops.placeholder(dtype=array.dtype,
                                       name=op_prefix+".holder")
        handle_op = session_ops.get_session_handle(holder,
                                                   name=op_prefix+".handle")
      self.op_cache[key] = (holder, handle_op)

    handle = self.run(handle_op, feed_dict={holder: array})
    return handle
项目:imperative    作者:yaroslavvb    | 项目源码 | 文件源码
def numpy_to_handle(self, array):
    """Upload numpy array into TensorFlow runtime.

    Args:
      array: numpy array to convert to TensorHandle

    Returns:
      TensorHandle corresponding to given numpy array.
    """

    tf_dtype = dtypes.as_dtype(array.dtype)
    current_device = get_current_device_string(self.g)
    current_device_sanitized = current_device.replace(":", "")
    key = ("numpy_to_handle", tf_dtype.name, current_device)

    if key in self.op_cache:
      holder, handle_op = self.op_cache[key]
    else:
      if self.PRINT_CACHE_MISSES:
        print("Imperative cache miss for %s"%(str(key)))

      op_prefix = "numpy_to_handle.%s.%s" % (tf_dtype.name,
                                             current_device_sanitized)
      with self.g.as_default():
        holder = array_ops.placeholder(dtype=array.dtype,
                                       name=op_prefix+".holder")
        handle_op = session_ops.get_session_handle(holder,
                                                   name=op_prefix+".handle")
      self.op_cache[key] = (holder, handle_op)

    handle = self.run(handle_op, feed_dict={holder: array})
    return handle
项目:GMAN    作者:iDurugkar    | 项目源码 | 文件源码
def __init__(self,
                 images,
                 labels,
                 fake_data=False,
                 one_hot=False,
                 dtype=dtypes.float32,
                 reshape=True):
        """Construct a DataSet.
        one_hot arg is used only if fake_data is true.  `dtype` can be either
        `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
        `[0, 1]`.
        """
        dtype = dtypes.as_dtype(dtype).base_dtype
        if dtype not in (dtypes.uint8, dtypes.float32):
            raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                            dtype)
        if fake_data:
            self._num_examples = 10000
            self.one_hot = one_hot
        else:
            assert images.shape[0] == labels.shape[0], (
                'images.shape: %s labels.shape: %s' % (images.shape, labels.shape))
            self._num_examples = images.shape[0]

            # Convert shape from [num examples, rows, columns, depth]
            # to [num examples, rows*columns] (assuming depth == 1)
            if reshape:
                assert images.shape[3] == 1
                images = images.reshape(images.shape[0],
                                        images.shape[1] * images.shape[2])

        self._images = images
        self._labels = labels
        self._epochs_completed = 0
        self._index_in_epoch = 0
项目:sat-seg    作者:mshiv    | 项目源码 | 文件源码
def __init__(self, images, labels, fake_data=False, one_hot=False):#, dtype=dtypes.float32):
    #dtype = dtypes.as_dtype(dtype).base_dtype
    if fake_data:
      self._num_examples = 10000
    else:
      assert images.shape[0] == labels.shape[0], (
          "images.shape: %s labels.shape: %s" % (images.shape,
                                                 labels.shape))
      self._num_examples = images.shape[0]
      # Convert shape from [num examples, rows, columns, depth]
      # to [num examples, rows*columns*depth] (assuming depth == 3)
      #assert images.shape[3] == 1

      #images = images.reshape(images.shape[0],images.shape[1] * images.shape[2] * images.shape[3])
      # Convert from [0, 255] -> [0.0, 1.0].
      images = np.multiply(images, 1.0/255.0)
      images -= np.mean(images)
      images = images.astype(np.float32)

      # normalize labels to values [0,1] for binary classification
      labels = np.multiply(labels, 1.0/255.0)
      labels = labels.astype(np.float32)

    self._images = images
    self._labels = labels
    self._epochs_completed = 0  
    self._index_in_epoch = 0
项目:kaggle-youtube-8m    作者:liufuyang    | 项目源码 | 文件源码
def __init__(self,
               images,
               labels,
               start_id=0,
               fake_data=False,
               one_hot=False,
               dtype=dtypes.float32):
    """Construct a DataSet.
    one_hot arg is used only if fake_data is true.  `dtype` can be either
    `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
    `[0, 1]`.
    """
    dtype = dtypes.as_dtype(dtype).base_dtype
    if dtype not in (dtypes.uint8, dtypes.float32):
      raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                      dtype)
    if fake_data:
      self._num_examples = 10000
      self.one_hot = one_hot
    else:
      assert images.shape[0] == labels.shape[0], (
          'images.shape: %s labels.shape: %s' % (images.shape, labels.shape))
      self._num_examples = images.shape[0]

      # Convert shape from [num examples, rows, columns, depth]
      # to [num examples, rows*columns] (assuming depth == 1)
      assert images.shape[3] == 1
      images = images.reshape(images.shape[0],
                              images.shape[1] * images.shape[2])
      if dtype == dtypes.float32:
        # Convert from [0, 255] -> [0.0, 1.0].
        images = images.astype(numpy.float32)
        images = numpy.multiply(images, 1.0 / 255.0)
    self._ids = numpy.arange(start_id, start_id + self._num_examples)
    self._images = images
    self._labels = labels
    self._epochs_completed = 0
    self._index_in_epoch = 0
项目:thinstack-rl    作者:hans    | 项目源码 | 文件源码
def _compute_gradient(x,
                      x_shape,
                      dx,
                      y,
                      y_shape,
                      dy,
                      x_init_value=None,
                      delta=1e-3,
                      feed_dict=None,
                      prep_fn=None,
                      limit=0):
  """Computes the theoretical and numerical jacobian."""
  t = dtypes.as_dtype(x.dtype)
  allowed_types = [dtypes.float16, dtypes.float32, dtypes.float64,
                   dtypes.complex64, dtypes.complex128]
  assert t.base_dtype in allowed_types, "Don't support type %s for x" % t.name
  t2 = dtypes.as_dtype(y.dtype)
  assert t2.base_dtype in allowed_types, "Don't support type %s for y" % t2.name

  if x_init_value is not None:
    i_shape = list(x_init_value.shape)
    assert(list(x_shape) == i_shape), "x_shape = %s, init_data shape = %s" % (
        x_shape, i_shape)
    x_data = x_init_value
  else:
    if t == dtypes.float16:
      dtype = np.float16
    elif t == dtypes.float32:
      dtype = np.float32
    else:
      dtype = np.float64
    x_data = np.asfarray(np.random.random_sample(x_shape), dtype=dtype)

  print("\ttheoretical jacobian..")
  jacob_t = _compute_theoretical_jacobian(x, x_shape, x_data, dy, y_shape, dx, feed_dict, prep_fn=prep_fn)

  print("\tnumeric jacobian..")
  jacob_n = _compute_numeric_jacobian(x, x_shape, x_data, y, y_shape, delta, feed_dict, prep_fn=prep_fn, limit=limit)
  return jacob_t, jacob_n
项目:FavoriteGirls    作者:yulingtianxia    | 项目源码 | 文件源码
def __init__(self,
               images,
               labels,
               fake_data=False,
               one_hot=False,
               dtype=dtypes.float32,
               reshape=False):
    """Construct a DataSet.
    one_hot arg is used only if fake_data is true.  `dtype` can be either
    `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
    `[0, 1]`.
    """
    dtype = dtypes.as_dtype(dtype).base_dtype
    if dtype not in (dtypes.uint8, dtypes.float32):
      raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                      dtype)
    if fake_data:
      self._num_examples = 10000
      self.one_hot = one_hot
    else:
      assert images.shape[0] == labels.shape[0], (
          'images.shape: %s labels.shape: %s' % (images.shape, labels.shape))
      self._num_examples = images.shape[0]

      # Convert shape from [num examples, rows, columns, depth]
      # to [num examples, rows*columns] (assuming depth == 1)
      if reshape:
        assert images.shape[3] == 1
        images = images.reshape(images.shape[0],
                                images.shape[1] * images.shape[2])
      if dtype == dtypes.float32:
        # Convert from [0, 255] -> [0.0, 1.0].
        images = images.astype(numpy.float32)
        images = numpy.multiply(images, 1.0 / 255.0)
    self._images = images
    self._labels = labels
项目:curriculum-dropout    作者:pmorerio    | 项目源码 | 文件源码
def __init__(self,
               images,
               labels,
               dtype=dtypes.float32,
               reshape=True):
    """Construct a DataSet.
    `dtype` can be either `uint8` to leave the input as `[0, 255]`, 
    or `float32` to rescale into `[0, 1]`.
    """
    dtype = dtypes.as_dtype(dtype).base_dtype
    if dtype not in (dtypes.uint8, dtypes.float32):
      raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                      dtype)
    assert images.shape[0] == labels.shape[0], (
        'images.shape: %s labels.shape: %s' % (images.shape, labels.shape))
    self._num_examples = images.shape[0]

    # Convert shape from [num examples, rows, columns, depth]
    # to [num examples, rows*columns] (assuming depth == 1)
    if reshape:
      #assert images.shape[3] == 1
      images = images.reshape(images.shape[0],
                              images.shape[1] * images.shape[2])
    if dtype == dtypes.float32:
      # Convert from [0, 255] -> [0.0, 1.0].
      images = images.astype(np.float32)
      #images = np.multiply(images, 1.0 / 255.0)
    self._images = images-0.5
    self._labels = labels
    self._epochs_completed = 0
    self._index_in_epoch = 0
项目:gan_tensorflow    作者:dantkz    | 项目源码 | 文件源码
def __init__(self,
               images,
               labels,
               one_hot=False,
               dtype=dtypes.float32):
    """Construct a DataSet.
    `dtype` can be either
    `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
    `[0, 1]`.
    """
    dtype = dtypes.as_dtype(dtype).base_dtype
    if dtype not in (dtypes.uint8, dtypes.float32):
      raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                      dtype)

    assert images.shape[0] == labels.shape[0], (
        'images.shape: %s labels.shape: %s' % (images.shape, labels.shape))
    self._num_examples = images.shape[0]

    # Convert shape from [num examples, rows, columns, depth]
    # to [num examples, rows*columns] (assuming depth == 1)
    assert images.shape[3] == 1
    images = images.reshape(images.shape[0],
                            images.shape[1] * images.shape[2])
    if dtype == dtypes.float32:
      # Convert from [0, 255] -> [0.0, 1.0].
      images = images.astype(numpy.float32)
      images = numpy.multiply(images, 1.0 / 255.0)
    self._images = images
    self._labels = labels
    self._epochs_completed = 0
    self._index_in_epoch = 0
    self.perm = numpy.arange(self._num_examples)
    numpy.random.shuffle(self.perm)

    print('Number of examples: ' + str(self._num_examples))
项目:Handwritten_recognition_tensorflow    作者:sanjanaramprasad    | 项目源码 | 文件源码
def __init__(self,
               images,
               labels,
               fake_data=False,
               one_hot=False,
               dtype=dtypes.float32,
               reshape=True):

        dtype = dtypes.as_dtype(dtype).base_dtype
        if dtype not in (dtypes.uint8, dtypes.float32):
          raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                          dtype)
        if fake_data:
          self._num_examples = 10000
          self.one_hot = one_hot
        else:
          assert images.shape[0] == labels.shape[0], (
              'images.shape: %s labels.shape: %s' % (images.shape, labels.shape))
          self._num_examples = images.shape[0]

          # Convert shape from [num examples, rows, columns, depth]
          # to [num examples, rows*columns] (assuming depth == 1)
          if reshape:
            assert images.shape[3] == 1
            images = images.reshape(images.shape[0],
                                    images.shape[1] * images.shape[2])
          if dtype == dtypes.float32:
            # Convert from [0, 255] -> [0.0, 1.0].
            images = images.astype(np.float32)
            images = np.multiply(images, 1.0 / 255.0)
        self._images = images
        self._labels = labels
        self._epochs_completed = 0
        self._index_in_epoch = 0
项目:Handwritten_recognition_tensorflow    作者:sanjanaramprasad    | 项目源码 | 文件源码
def __init__(self,
               images,
               labels,
               fake_data=False,
               one_hot=False,
               dtype=dtypes.float32,
               reshape=True):

        dtype = dtypes.as_dtype(dtype).base_dtype
        if dtype not in (dtypes.uint8, dtypes.float32):
          raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                          dtype)
        if fake_data:
          self._num_examples = 10000
          self.one_hot = one_hot
        else:
          assert images.shape[0] == labels.shape[0], (
              'images.shape: %s labels.shape: %s' % (images.shape, labels.shape))
          self._num_examples = images.shape[0]

          # Convert shape from [num examples, rows, columns, depth]
          # to [num examples, rows*columns] (assuming depth == 1)
          if reshape:
            assert images.shape[3] == 1
            images = images.reshape(images.shape[0],
                                    images.shape[1] * images.shape[2])
          if dtype == dtypes.float32:
            # Convert from [0, 255] -> [0.0, 1.0].
            images = images.astype(np.float32)
            images = np.multiply(images, 1.0 / 255.0)
        self._images = images
        self._labels = labels
        self._epochs_completed = 0
        self._index_in_epoch = 0
项目:Handwritten_recognition_tensorflow    作者:sanjanaramprasad    | 项目源码 | 文件源码
def __init__(self,
               images,
               labels,
               fake_data=False,
               one_hot=False,
               dtype=dtypes.float32,
               reshape=True):

        dtype = dtypes.as_dtype(dtype).base_dtype
        if dtype not in (dtypes.uint8, dtypes.float32):
          raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                          dtype)
        if fake_data:
          self._num_examples = 10000
          self.one_hot = one_hot
        else:
          assert images.shape[0] == labels.shape[0], (
              'images.shape: %s labels.shape: %s' % (images.shape, labels.shape))
          self._num_examples = images.shape[0]

          # Convert shape from [num examples, rows, columns, depth]
          # to [num examples, rows*columns] (assuming depth == 1)
          if reshape:
            assert images.shape[3] == 1
            images = images.reshape(images.shape[0],
                                    images.shape[1] * images.shape[2])
          if dtype == dtypes.float32:
            # Convert from [0, 255] -> [0.0, 1.0].
            images = images.astype(np.float32)
            images = np.multiply(images, 1.0 / 255.0)
        self._images = images
        self._labels = labels
        self._epochs_completed = 0
        self._index_in_epoch = 0
项目:Handwritten_recognition_tensorflow    作者:sanjanaramprasad    | 项目源码 | 文件源码
def __init__(self,
               images,
               labels,
               fake_data=False,
               one_hot=False,
               dtype=dtypes.float32,
               reshape=True):

        dtype = dtypes.as_dtype(dtype).base_dtype
        if dtype not in (dtypes.uint8, dtypes.float32):
          raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                          dtype)
        if fake_data:
          self._num_examples = 10000
          self.one_hot = one_hot
        else:
          assert images.shape[0] == labels.shape[0], (
              'images.shape: %s labels.shape: %s' % (images.shape, labels.shape))
          self._num_examples = images.shape[0]

          # Convert shape from [num examples, rows, columns, depth]
          # to [num examples, rows*columns] (assuming depth == 1)
          if reshape:
            assert images.shape[3] == 1
            images = images.reshape(images.shape[0],
                                    images.shape[1] * images.shape[2])
          if dtype == dtypes.float32:
            # Convert from [0, 255] -> [0.0, 1.0].
            images = images.astype(np.float32)
            images = np.multiply(images, 1.0 / 255.0)
        self._images = images
        self._labels = labels
        self._epochs_completed = 0
        self._index_in_epoch = 0
项目:LifelongVAE    作者:jramapuram    | 项目源码 | 文件源码
def __init__(self,
                 images,
                 labels,
                 one_hot=False,
                 dtype=dtypes.float32,
                 normalize=False):
        """Construct a DataSet.
        one_hot arg is used only if fake_data is true.  `dtype` can be either
        `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
        `[0, 1]`.
        """
        dtype = dtypes.as_dtype(dtype).base_dtype
        if dtype not in (dtypes.uint8, dtypes.float32):
            raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                            dtype)
        assert images.shape[0] == labels.shape[0], (
            'images.shape: %s labels.shape: %s' % (images.shape, labels.shape))
        self._num_examples = images.shape[0]

        if dtype == dtypes.float32:
            # Convert from [0, 255] -> [0.0, 1.0].
            images = images.astype(np.float32)
            if normalize:
                images = np.multiply(images, 1.0 / 255.0)

        self._images = images
        self._labels = labels
        self._epochs_completed = 0
        self._index_in_epoch = 0
项目:LifelongVAE    作者:jramapuram    | 项目源码 | 文件源码
def __init__(self,
                 images,
                 labels,
                 one_hot=False,
                 dtype=dtypes.float32,
                 normalize=True):
        """Construct a DataSet.
        one_hot arg is used only if fake_data is true.  `dtype` can be either
        `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
        `[0, 1]`.
        """
        dtype = dtypes.as_dtype(dtype).base_dtype
        if dtype not in (dtypes.uint8, dtypes.float32):
            raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                            dtype)
        assert images.shape[0] == labels.shape[0], (
            'images.shape: %s labels.shape: %s' % (images.shape, labels.shape))
        self._num_examples = images.shape[0]

        if dtype == dtypes.float32:
            # Convert from [0, 255] -> [0.0, 1.0].
            images = images.astype(np.float32)
            if normalize:
                images = np.multiply(images, 1.0 / 255.0)

        self._images = images
        self._labels = labels
        self._epochs_completed = 0
        self._index_in_epoch = 0
项目:tanda    作者:HazyResearch    | 项目源码 | 文件源码
def __init__(self,
               images,
               labels,
               fake_data=False,
               one_hot=False,
               dtype=dtypes.float32,
               reshape=True):
    """Construct a DataSet.
    one_hot arg is used only if fake_data is true.  `dtype` can be either
    `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
    `[0, 1]`.
    """
    dtype = dtypes.as_dtype(dtype).base_dtype
    if dtype not in (dtypes.uint8, dtypes.float32):
      raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                      dtype)
    if fake_data:
      self._num_examples = 10000
      self.one_hot = one_hot
    else:
      assert images.shape[0] == labels.shape[0], (
          'images.shape: %s labels.shape: %s' % (images.shape, labels.shape))
      self._num_examples = images.shape[0]

      # Convert shape from [num examples, rows, columns, depth]
      # to [num examples, rows*columns] (assuming depth == 1)
      if reshape:
        assert images.shape[3] == 1
        images = images.reshape(images.shape[0],
                                images.shape[1] * images.shape[2])
      if dtype == dtypes.float32:
        # Convert from [0, 255] -> [0.0, 1.0].
        images = images.astype(numpy.float32)
        images = numpy.multiply(images, 1.0 / 255.0)
    self._images = images
    self._labels = labels
    self._epochs_completed = 0
    self._index_in_epoch = 0
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def __init__(self, key_dtype, value_dtype, name):
    """Construct a lookup table interface.

    Args:
      key_dtype: The table key type.
      value_dtype: The table value type.
      name: A name for the operation (optional).
    """
    self._key_dtype = dtypes.as_dtype(key_dtype)
    self._value_dtype = dtypes.as_dtype(value_dtype)
    self._name = name
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def __init__(self, key_dtype, value_dtype):
    """Construct a table initializer object.

    Args:
      key_dtype: Type of the table keys.
      value_dtype: Type of the table values.
    """
    self._key_dtype = dtypes.as_dtype(key_dtype)
    self._value_dtype = dtypes.as_dtype(value_dtype)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def test_odeint_all_dtypes(self):
    func = lambda y, t: y
    t = np.linspace(0.0, 1.0, 11)
    for y0_dtype in [
        dtypes.float32, dtypes.float64, dtypes.complex64, dtypes.complex128
    ]:
      for t_dtype in [dtypes.float32, dtypes.float64]:
        y0 = math_ops.cast(1.0, y0_dtype)
        y_solved = odes.odeint(func, y0, math_ops.cast(t, t_dtype))
        with self.test_session() as sess:
          y_solved = sess.run(y_solved)
        expected = np.asarray(np.exp(t))
        self.assertAllClose(y_solved, expected, rtol=1e-5)
        self.assertEqual(dtypes.as_dtype(y_solved.dtype), y0_dtype)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def _check_dtype(dtype):
  if dtypes.as_dtype(dtype) == dtypes.float64:
    logging.warn(
        'float64 is not supported by many models, consider casting to float32.')
  return dtype
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def input_builder(self):
    """Builds inputs in the graph.

    Returns:
      Two placeholders for inputs and outputs.
    """

    def get_placeholder(shape, dtype, name_prepend):
      if shape is None:
        return None
      if isinstance(shape, dict):
        placeholder = {}
        for key in list(shape.keys()):
          placeholder[key] = array_ops.placeholder(
              dtypes.as_dtype(dtype[key]), [None] + shape[key][1:],
              name=name_prepend + '_' + key)
      else:
        placeholder = array_ops.placeholder(
            dtypes.as_dtype(dtype), [None] + shape[1:], name=name_prepend)
      return placeholder

    self._input_placeholder = get_placeholder(self.input_shape,
                                              self._input_dtype, 'input')
    self._output_placeholder = get_placeholder(self.output_shape,
                                               self._output_dtype, 'output')
    return self._input_placeholder, self._output_placeholder
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def assertAC(self, x, y):
    """Derived classes can set _atol, _rtol to get different tolerance."""
    dtype = dtypes.as_dtype(x.dtype)
    atol = self._atol[dtype]
    rtol = self._rtol[dtype]
    self.assertAllClose(x, y, atol=atol, rtol=rtol)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def random_normal(shape, mean=0.0, stddev=1.0, dtype=dtypes.float32, seed=None):
  """Tensor with (possibly complex) Gaussian entries.

  Samples are distributed like

N(mean, stddev^2), if dtype is real, X + iY, where X, Y ~ N(mean, stddev^2) if dtype is complex.

Args:
    shape:  `TensorShape` or Python list.  Shape of the returned tensor.
    mean:  `Tensor` giving mean of normal to sample from.
    stddev:  `Tensor` giving stdev of normal to sample from.
    dtype:  `TensorFlow` `dtype` or numpy dtype
    seed:  Python integer seed for the RNG.

  Returns:
    `Tensor` with desired shape and dtype.
  """
  dtype = dtypes.as_dtype(dtype)

  with ops.name_scope("random_normal"):
    samples = random_ops.random_normal(
        shape, mean=mean, stddev=stddev, dtype=dtype.real_dtype, seed=seed)
    if dtype.is_complex:
      if seed is not None:
        seed += 1234
      more_samples = random_ops.random_normal(
          shape, mean=mean, stddev=stddev, dtype=dtype.real_dtype, seed=seed)
      samples = math_ops.complex(samples, more_samples)
    return samples
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def random_uniform(shape,
                   minval=None,
                   maxval=None,
                   dtype=dtypes.float32,
                   seed=None):
  """Tensor with (possibly complex) Uniform entries.

  Samples are distributed like

Uniform[minval, maxval], if dtype is real, X + iY, where X, Y ~ Uniform[minval, maxval], if dtype is complex.

Args:
    shape:  `TensorShape` or Python list.  Shape of the returned tensor.
    minval:  `0-D` `Tensor` giving the minimum values.
    maxval:  `0-D` `Tensor` giving the maximum values.
    dtype:  `TensorFlow` `dtype` or Python dtype
    seed:  Python integer seed for the RNG.

  Returns:
    `Tensor` with desired shape and dtype.
  """
  dtype = dtypes.as_dtype(dtype)

  with ops.name_scope("random_uniform"):
    samples = random_ops.random_uniform(
        shape, dtype=dtype.real_dtype, minval=minval, maxval=maxval, seed=seed)
    if dtype.is_complex:
      if seed is not None:
        seed += 12345
      more_samples = random_ops.random_uniform(
          shape,
          dtype=dtype.real_dtype,
          minval=minval,
          maxval=maxval,
          seed=seed)
      samples = math_ops.complex(samples, more_samples)
    return samples
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def random_sign_uniform(shape,
                        minval=None,
                        maxval=None,
                        dtype=dtypes.float32,
                        seed=None):
  """Tensor with (possibly complex) random entries from a "sign Uniform".

  Letting `Z` be a random variable equal to `-1` and `1` with equal probability,
  Samples from this `Op` are distributed like

Z X, where X ~ Uniform[minval, maxval], if dtype is real, Z (X + iY), where X, Y ~ Uniform[minval, maxval], if dtype is complex.

Args:
    shape:  `TensorShape` or Python list.  Shape of the returned tensor.
    minval:  `0-D` `Tensor` giving the minimum values.
    maxval:  `0-D` `Tensor` giving the maximum values.
    dtype:  `TensorFlow` `dtype` or Python dtype
    seed:  Python integer seed for the RNG.

  Returns:
    `Tensor` with desired shape and dtype.
  """
  dtype = dtypes.as_dtype(dtype)

  with ops.name_scope("random_sign_uniform"):
    unsigned_samples = random_uniform(
        shape, minval=minval, maxval=maxval, dtype=dtype, seed=seed)
    if seed is not None:
      seed += 12
    signs = math_ops.sign(
        random_ops.random_uniform(
            shape, minval=-1., maxval=1., seed=seed))
    return unsigned_samples * math_ops.cast(signs, unsigned_samples.dtype)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def _testNAry(self, op, args, expected):
    with self.test_session() as session:
      with self.test_scope():
        placeholders = [
            array_ops.placeholder(dtypes.as_dtype(arg.dtype), arg.shape)
            for arg in args
        ]
        feeds = {placeholders[i]: args[i] for i in range(0, len(args))}
        output = op(placeholders)
      result = session.run(output, feeds)
      self.assertAllClose(result, expected, rtol=1e-3)