Python tensorflow.python.framework.dtypes 模块,int64() 实例源码

我们从Python开源项目中,提取了以下49个代码示例,用于说明如何使用tensorflow.python.framework.dtypes.int64()

项目:LIE    作者:EmbraceLife    | 项目源码 | 文件源码
def in_top_k(predictions, targets, k):
      """Returns whether the `targets` are in the top `k` `predictions`.

      Arguments:
          predictions: A tensor of shape `(batch_size, classes)` and type `float32`.
          targets: A 1D tensor of length `batch_size` and type `int32` or `int64`.
          k: An `int`, number of top elements to consider.

      Returns:
          A 1D tensor of length `batch_size` and type `bool`.
          `output[i]` is `True` if `predictions[i, targets[i]]` is within top-`k`
          values of `predictions[i]`.
      """
      return nn.in_top_k(predictions, targets, k)


    # CONVOLUTIONS
项目:LIE    作者:EmbraceLife    | 项目源码 | 文件源码
def _tensor_shape_tensor_conversion_function(s, dtype=None, name=None,
                                             as_ref=False):
  _ = as_ref
  if not s.is_fully_defined():
    raise ValueError(
        "Cannot convert a partially known TensorShape to a Tensor: %s" % s)
  s_list = s.as_list()
  int64_value = 0
  for dim in s_list:
    if dim >= 2**31:
      int64_value = dim
      break

  if dtype is not None:
    if dtype not in (dtypes.int32, dtypes.int64):
      raise TypeError("Cannot convert a TensorShape to dtype: %s" % dtype)
    if dtype == dtypes.int32 and int64_value:
      raise ValueError("Cannot convert a TensorShape to dtype int32; "
                       "a dimension is too large (%s)" % int64_value)
  else:
    dtype = dtypes.int64 if int64_value else dtypes.int32
  if name is None:
    name = "shape_as_tensor"
  return constant(s_list, dtype=dtype, name=name)
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def assert_scalar_int(tensor):
  """Assert `tensor` is 0-D, of type `tf.int32` or `tf.int64`.

  Args:
    tensor: Tensor to test.
  Returns:
    `tensor`, for chaining.
  Raises:
    ValueError: if `tensor` is not 0-D, of type `tf.int32` or `tf.int64`.
  """
  data_type = tensor.dtype
  if data_type.base_dtype not in [dtypes.int32, dtypes.int64]:
    raise ValueError('Unexpected type %s for %s.' % (data_type, tensor.name))
  shape = tensor.get_shape()
  if shape.ndims != 0:
    raise ValueError('Unexpected shape %s for %s.' % (shape, tensor.name))
  return tensor
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def create_global_step(graph=None):
  """Create global step tensor in graph.

  Args:
    graph: The graph in which to create the global step. If missing, use default
        graph.

  Returns:
    Global step tensor.

  Raises:
    ValueError: if global step key is already defined.
  """
  graph = ops.get_default_graph() if graph is None else graph
  if get_global_step(graph) is not None:
    raise ValueError('"global_step" already exists.')
  # Create in proper graph and base name_scope.
  with graph.as_default() as g, g.name_scope(None):
    collections = [ops.GraphKeys.VARIABLES, ops.GraphKeys.GLOBAL_STEP]
    return variable(ops.GraphKeys.GLOBAL_STEP, shape=[], dtype=dtypes.int64,
                    initializer=init_ops.zeros_initializer, trainable=False,
                    collections=collections)
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def one_hot_matrix(tensor_in, num_classes, on_value=1.0, off_value=0.0):
  """Encodes indices from given tensor as one-hot tensor.

  TODO(ilblackdragon): Ideally implementation should be
  part of TensorFlow with Eigen-native operation.

  Args:
    tensor_in: Input tensor of shape [N1, N2].
    num_classes: Number of classes to expand index into.
    on_value: Tensor or float, value to fill-in given index.
    off_value: Tensor or float, value to fill-in everything else.
  Returns:
    Tensor of shape [N1, N2, num_classes] with 1.0 for each id in original
    tensor.
  """
  return array_ops_.one_hot(
      math_ops.cast(tensor_in, dtypes.int64), num_classes, on_value, off_value)
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def _maybe_select_class_id(labels, predictions_idx, selected_id=None):
  """If class ID is specified, filter all other classes.

  Args:
    labels: `int64` `Tensor` or `SparseTensor` with shape
      [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of
      target classes for the associated prediction. Commonly, N=1 and `labels`
      has shape [batch_size, num_labels]. [D1, ... DN] must match
      `predictions_idx`.
    predictions_idx: `int64` `Tensor` of class IDs, with shape [D1, ... DN, k]
      where N >= 1. Commonly, N=1 and `predictions_idx` has shape
      [batch size, k].
    selected_id: Int id to select.

  Returns:
    Tuple of `labels` and `predictions_idx`, possibly with classes removed.
  """
  if selected_id is None:
    return labels, predictions_idx
  return (_select_class_id(labels, selected_id),
          _select_class_id(predictions_idx, selected_id))
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def _make_auc_histograms(boolean_labels, scores, score_range, nbins):
  """Create histogram tensors from one batch of labels/scores."""

  with variable_scope.variable_scope(
      None, 'make_auc_histograms', [boolean_labels, scores, nbins]):
    # Histogram of scores for records in this batch with True label.
    hist_true = histogram_ops.histogram_fixed_width(
        array_ops.boolean_mask(scores, boolean_labels),
        score_range,
        nbins=nbins,
        dtype=dtypes.int64,
        name='hist_true')
    # Histogram of scores for records in this batch with False label.
    hist_false = histogram_ops.histogram_fixed_width(
        array_ops.boolean_mask(scores, math_ops.logical_not(boolean_labels)),
        score_range,
        nbins=nbins,
        dtype=dtypes.int64,
        name='hist_false')
    return hist_true, hist_false
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def one_hot_matrix(tensor_in, num_classes, on_value=1.0, off_value=0.0):
  """Encodes indices from given tensor as one-hot tensor.

  TODO(ilblackdragon): Ideally implementation should be
  part of TensorFlow with Eigen-native operation.

  Args:
    tensor_in: Input tensor of shape [N1, N2].
    num_classes: Number of classes to expand index into.
    on_value: Tensor or float, value to fill-in given index.
    off_value: Tensor or float, value to fill-in everything else.
  Returns:
    Tensor of shape [N1, N2, num_classes] with 1.0 for each id in original
    tensor.
  """
  return array_ops_.one_hot(
      math_ops.cast(tensor_in, dtypes.int64), num_classes, on_value, off_value)
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def _maybe_select_class_id(labels, predictions_idx, selected_id=None):
  """If class ID is specified, filter all other classes.

  Args:
    labels: `int64` `Tensor` or `SparseTensor` with shape
      [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of
      target classes for the associated prediction. Commonly, N=1 and `labels`
      has shape [batch_size, num_labels]. [D1, ... DN] must match
      `predictions_idx`.
    predictions_idx: `int64` `Tensor` of class IDs, with shape [D1, ... DN, k]
      where N >= 1. Commonly, N=1 and `predictions_idx` has shape
      [batch size, k].
    selected_id: Int id to select.

  Returns:
    Tuple of `labels` and `predictions_idx`, possibly with classes removed.
  """
  if selected_id is None:
    return labels, predictions_idx
  return (_select_class_id(labels, selected_id),
          _select_class_id(predictions_idx, selected_id))
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def _make_auc_histograms(boolean_labels, scores, score_range, nbins):
  """Create histogram tensors from one batch of labels/scores."""

  with variable_scope.variable_scope(
      None, 'make_auc_histograms', [boolean_labels, scores, nbins]):
    # Histogram of scores for records in this batch with True label.
    hist_true = histogram_ops.histogram_fixed_width(
        array_ops.boolean_mask(scores, boolean_labels),
        score_range,
        nbins=nbins,
        dtype=dtypes.int64,
        name='hist_true')
    # Histogram of scores for records in this batch with False label.
    hist_false = histogram_ops.histogram_fixed_width(
        array_ops.boolean_mask(scores, math_ops.logical_not(boolean_labels)),
        score_range,
        nbins=nbins,
        dtype=dtypes.int64,
        name='hist_false')
    return hist_true, hist_false
项目:polyaxon    作者:polyaxon    | 项目源码 | 文件源码
def test_decode_example_with_iInt64_tensor(self):
        np_array = np.random.randint(1, 10, size=(2, 3, 1))

        example = example_pb2.Example(features=feature_pb2.Features(feature={
            'array': self._encode_int64_feature(np_array),
        }))

        serialized_example = example.SerializeToString()

        with self.test_session():
            serialized_example = array_ops.reshape(serialized_example, shape=[])
            keys_to_features = {
                'array': parsing_ops.FixedLenFeature(np_array.shape, dtypes.int64)
            }
            items_to_handlers = {'array': tfexample_decoder.Tensor('array'), }
            decoder = TFExampleDecoder(keys_to_features, items_to_handlers)
            [tf_array] = decoder.decode(serialized_example, ['array'])
            self.assertAllEqual(tf_array.eval(), np_array)
项目:polyaxon    作者:polyaxon    | 项目源码 | 文件源码
def test_decode_example_with_var_len_tensor(self):
        np_array = np.array([[[1], [2], [3]], [[4], [5], [6]]])

        example = example_pb2.Example(features=feature_pb2.Features(feature={
            'labels': self._encode_int64_feature(np_array),
        }))

        serialized_example = example.SerializeToString()

        with self.test_session():
            serialized_example = array_ops.reshape(serialized_example, shape=[])
            keys_to_features = {
                'labels': parsing_ops.VarLenFeature(dtype=dtypes.int64),
            }
            items_to_handlers = {'labels': tfexample_decoder.Tensor('labels'), }
            decoder = TFExampleDecoder(keys_to_features,
                                       items_to_handlers)
            [tf_labels] = decoder.decode(serialized_example, ['labels'])
            labels = tf_labels.eval()
            self.assertAllEqual(labels, np_array.flatten())
项目:polyaxon    作者:polyaxon    | 项目源码 | 文件源码
def test_decode_example_with_fix_len_tensor_with_shape(self):
        np_array = np.array([[1, 2, 3], [4, 5, 6]])

        example = example_pb2.Example(features=feature_pb2.Features(feature={
            'labels': self._encode_int64_feature(np_array),
        }))

        serialized_example = example.SerializeToString()

        with self.test_session():
            serialized_example = array_ops.reshape(serialized_example, shape=[])
            keys_to_features = {
                'labels': parsing_ops.FixedLenFeature(np_array.shape, dtype=dtypes.int64),
            }
            items_to_handlers = {
                'labels': tfexample_decoder.Tensor('labels', shape=np_array.shape),
            }
            decoder = TFExampleDecoder(keys_to_features, items_to_handlers)
            [tf_labels] = decoder.decode(serialized_example, ['labels'])
            labels = tf_labels.eval()
            self.assertAllEqual(labels, np_array)
项目:polyaxon    作者:polyaxon    | 项目源码 | 文件源码
def test_decode_example_with_var_len_tensor_to_dense(self):
        np_array = np.array([[1, 2, 3], [4, 5, 6]])
        example = example_pb2.Example(features=feature_pb2.Features(feature={
            'labels': self._encode_int64_feature(np_array),
        }))

        serialized_example = example.SerializeToString()

        with self.test_session():
            serialized_example = array_ops.reshape(serialized_example, shape=[])
            keys_to_features = {
                'labels': parsing_ops.VarLenFeature(dtype=dtypes.int64),
            }
            items_to_handlers = {
                'labels': tfexample_decoder.Tensor(
                    'labels', shape=np_array.shape),
            }
            decoder = TFExampleDecoder(keys_to_features, items_to_handlers)
            [tf_labels] = decoder.decode(serialized_example, ['labels'])
            labels = tf_labels.eval()
            self.assertAllEqual(labels, np_array)
项目:polyaxon    作者:polyaxon    | 项目源码 | 文件源码
def test_decode_example_with_sparse_tensor(self):
        np_indices = np.array([[1], [2], [5]])
        np_values = np.array([0.1, 0.2, 0.6]).astype('f')
        example = example_pb2.Example(features=feature_pb2.Features(feature={
            'indices': self._encode_int64_feature(np_indices),
            'values': self._encode_float_feature(np_values),
        }))

        serialized_example = example.SerializeToString()

        with self.test_session():
            serialized_example = array_ops.reshape(serialized_example, shape=[])
            keys_to_features = {
                'indices': parsing_ops.VarLenFeature(dtype=dtypes.int64),
                'values': parsing_ops.VarLenFeature(dtype=dtypes.float32),
            }
            items_to_handlers = {'labels': tfexample_decoder.SparseTensor()}
            decoder = TFExampleDecoder(keys_to_features, items_to_handlers)
            [tf_labels] = decoder.decode(serialized_example, ['labels'])
            labels = tf_labels.eval()
            self.assertAllEqual(labels.indices, np_indices)
            self.assertAllEqual(labels.values, np_values)
            self.assertAllEqual(labels.dense_shape, np_values.shape)
项目:polyaxon    作者:polyaxon    | 项目源码 | 文件源码
def test_decode_example_with_sparse_tensor_to_dense(self):
        np_indices = np.array([1, 2, 5])
        np_values = np.array([0.1, 0.2, 0.6]).astype('f')
        np_shape = np.array([6])
        np_dense = np.array([0.0, 0.1, 0.2, 0.0, 0.0, 0.6]).astype('f')
        example = example_pb2.Example(features=feature_pb2.Features(feature={
            'indices': self._encode_int64_feature(np_indices),
            'values': self._encode_float_feature(np_values),
        }))

        serialized_example = example.SerializeToString()

        with self.test_session():
            serialized_example = array_ops.reshape(serialized_example, shape=[])
            keys_to_features = {
                'indices': parsing_ops.VarLenFeature(dtype=dtypes.int64),
                'values': parsing_ops.VarLenFeature(dtype=dtypes.float32),
            }
            items_to_handlers = {
                'labels': tfexample_decoder.SparseTensor(shape=np_shape, densify=True),
            }
            decoder = TFExampleDecoder(keys_to_features, items_to_handlers)
            [tf_labels] = decoder.decode(serialized_example, ['labels'])
            labels = tf_labels.eval()
            self.assertAllClose(labels, np_dense)
项目:polyaxon    作者:polyaxon    | 项目源码 | 文件源码
def _create_tfrecord_dataset(tmpdir):
    if not gfile.Exists(tmpdir):
        gfile.MakeDirs(tmpdir)

    data_sources = test_utils.create_tfrecord_files(tmpdir, num_files=1)

    keys_to_features = {
        'image/encoded': tf.FixedLenFeature(shape=(), dtype=dtypes.string, default_value=''),
        'image/format': tf.FixedLenFeature(shape=(), dtype=dtypes.string, default_value='jpeg'),
        'image/class/label': tf.FixedLenFeature(
            shape=[1], dtype=dtypes.int64,
            default_value=array_ops.zeros([1], dtype=dtypes.int64))
    }

    items_to_handlers = {
        'image': tfslim.tfexample_decoder.Image(),
        'label': tfslim.tfexample_decoder.Tensor('image/class/label'),
    }

    decoder = TFExampleDecoder(keys_to_features, items_to_handlers)

    return Dataset(
        data_sources=data_sources, reader=tf.TFRecordReader, decoder=decoder, num_samples=100)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def assert_scalar_int(tensor, name=None):
  """Assert `tensor` is 0-D, of type `tf.int32` or `tf.int64`.

  Args:
    tensor: `Tensor` to test.
    name: Name of the op and of the new `Tensor` if one is created.
  Returns:
    `tensor`, for chaining.
  Raises:
    ValueError: if `tensor` is not 0-D, of type `tf.int32` or `tf.int64`.
  """
  with ops.name_scope(name, 'assert_scalar_int', [tensor]) as name_scope:
    tensor = ops.convert_to_tensor(tensor)
    data_type = tensor.dtype
    if data_type.base_dtype not in [dtypes.int32, dtypes.int64]:
      raise ValueError('Unexpected type %s for %s.' % (data_type, tensor.name))
    return assert_scalar(tensor, name=name_scope)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def __init__(self, example_indices, feature_indices, feature_values):
    """Creates a `SparseFeatureColumn` representation.

    Args:
      example_indices: A 1-D int64 tensor of shape `[N]`. Also, accepts
      python lists, or numpy arrays.
      feature_indices: A 1-D int64 tensor of shape `[N]`. Also, accepts
      python lists, or numpy arrays.
      feature_values: An optional 1-D tensor float tensor of shape `[N]`. Also,
      accepts python lists, or numpy arrays.

    Returns:
      A `SparseFeatureColumn`
    """
    with name_scope(None, 'SparseFeatureColumn',
                    [example_indices, feature_indices]):
      self._example_indices = internal_convert_to_tensor(
          example_indices, name='example_indices', dtype=dtypes.int64)
      self._feature_indices = internal_convert_to_tensor(
          feature_indices, name='feature_indices', dtype=dtypes.int64)
    self._feature_values = None
    if feature_values is not None:
      with name_scope(None, 'SparseFeatureColumn', [feature_values]):
        self._feature_values = internal_convert_to_tensor(
            feature_values, name='feature_values', dtype=dtypes.float32)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testHashTable(self):
    with self.test_session():
      default_val = -1
      keys = constant_op.constant(["brain", "salad", "surgery"])
      values = constant_op.constant([0, 1, 2], dtypes.int64)
      table = lookup.HashTable(
          lookup.KeyValueTensorInitializer(keys, values), default_val)
      table.init.run()

      self.assertAllEqual(3, table.size().eval())

      input_string = constant_op.constant(["brain", "salad", "tank"])
      output = table.lookup(input_string)
      self.assertAllEqual([3], output.get_shape())

      result = output.eval()
      self.assertAllEqual([0, 1, -1], result)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testHashTableFindHighRank(self):
    with self.test_session():
      default_val = -1
      keys = constant_op.constant(["brain", "salad", "surgery"])
      values = constant_op.constant([0, 1, 2], dtypes.int64)
      table = lookup.HashTable(
          lookup.KeyValueTensorInitializer(keys, values), default_val)
      table.init.run()

      self.assertAllEqual(3, table.size().eval())

      input_string = constant_op.constant(
          [["brain", "salad"], ["tank", "tarkus"]])
      output = table.lookup(input_string)

      result = output.eval()
      self.assertAllEqual([[0, 1], [-1, -1]], result)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testHashTableInitWithPythonArrays(self):
    with self.test_session():
      default_val = -1
      keys = ["brain", "salad", "surgery"]
      values = [0, 1, 2]
      table = lookup.HashTable(
          lookup.KeyValueTensorInitializer(
              keys, values, value_dtype=dtypes.int64),
          default_val)
      table.init.run()

      self.assertAllEqual(3, table.size().eval())

      input_string = constant_op.constant(["brain", "salad", "tank"])
      output = table.lookup(input_string)

      result = output.eval()
      self.assertAllEqual([0, 1, -1], result)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testHashTableInitWithNumPyArrays(self):
    with self.test_session():
      default_val = -1
      keys = np.array(["brain", "salad", "surgery"], dtype=np.str)
      values = np.array([0, 1, 2], dtype=np.int64)
      table = lookup.HashTable(
          lookup.KeyValueTensorInitializer(keys, values), default_val)
      table.init.run()

      self.assertAllEqual(3, table.size().eval())

      input_string = constant_op.constant(["brain", "salad", "tank"])
      output = table.lookup(input_string)

      result = output.eval()
      self.assertAllEqual([0, 1, -1], result)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testHashTableWithSparseTensorInput(self):
    with self.test_session() as sess:
      default_val = constant_op.constant(-1, dtypes.int64)
      keys = constant_op.constant(["brain", "salad", "surgery"])
      values = constant_op.constant([0, 1, 2], dtypes.int64)
      table = lookup.HashTable(
          lookup.KeyValueTensorInitializer(keys, values), default_val)
      table.init.run()

      sp_indices = [[0, 0], [0, 1], [1, 0]]
      sp_shape = [2, 2]
      input_tensor = sparse_tensor.SparseTensor(
          constant_op.constant(sp_indices, dtypes.int64),
          constant_op.constant(["brain", "salad", "tank"]),
          constant_op.constant(sp_shape, dtypes.int64))
      output = table.lookup(input_tensor)

      out_indices, out_values, out_shape = sess.run(output)

      self.assertAllEqual([0, 1, -1], out_values)
      self.assertAllEqual(sp_indices, out_indices)
      self.assertAllEqual(sp_shape, out_shape)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testSignatureMismatch(self):
    with self.test_session():
      default_val = -1
      keys = constant_op.constant(["brain", "salad", "surgery"])
      values = constant_op.constant([0, 1, 2], dtypes.int64)
      table = lookup.HashTable(
          lookup.KeyValueTensorInitializer(keys, values), default_val)
      table.init.run()

      input_string = constant_op.constant([1, 2, 3], dtypes.int64)
      with self.assertRaises(TypeError):
        table.lookup(input_string)

      with self.assertRaises(TypeError):
        lookup.HashTable(
            lookup.KeyValueTensorInitializer(keys, values), "UNK")
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testMutableHashTableDuplicateInsert(self):
    with self.test_session():
      default_val = -1
      keys = constant_op.constant(["brain", "salad", "surgery", "brain"])
      values = constant_op.constant([0, 1, 2, 3], dtypes.int64)
      table = lookup.MutableHashTable(dtypes.string, dtypes.int64,
                                      default_val)
      self.assertAllEqual(0, table.size().eval())

      table.insert(keys, values).run()
      self.assertAllEqual(3, table.size().eval())

      input_string = constant_op.constant(["brain", "salad", "tank"])
      output = table.lookup(input_string)

      result = output.eval()
      self.assertAllEqual([3, 1, -1], result)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testMutableHashTableFindHighRank(self):
    with self.test_session():
      default_val = -1
      keys = constant_op.constant(["brain", "salad", "surgery"])
      values = constant_op.constant([0, 1, 2], dtypes.int64)
      table = lookup.MutableHashTable(dtypes.string, dtypes.int64,
                                      default_val)

      table.insert(keys, values).run()
      self.assertAllEqual(3, table.size().eval())

      input_string = constant_op.constant(
          [["brain", "salad"], ["tank", "tarkus"]])
      output = table.lookup(input_string)
      self.assertAllEqual([2, 2], output.get_shape())

      result = output.eval()
      self.assertAllEqual([[0, 1], [-1, -1]], result)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testMutableHashTableOfTensorsFindHighRank(self):
    with self.test_session():
      default_val = constant_op.constant([-1, -1, -1], dtypes.int64)
      keys = constant_op.constant(["brain", "salad", "surgery"])
      values = constant_op.constant([[0, 1, 2], [2, 3, 4], [4, 5, 6]],
                                    dtypes.int64)
      table = lookup.MutableHashTable(dtypes.string, dtypes.int64,
                                      default_val)

      table.insert(keys, values).run()
      self.assertAllEqual(3, table.size().eval())

      input_string = constant_op.constant(
          [["brain", "salad"], ["tank", "tarkus"]])
      output = table.lookup(input_string)
      self.assertAllEqual([2, 2, 3], output.get_shape())

      result = output.eval()
      self.assertAllEqual(
          [[[0, 1, 2], [2, 3, 4]], [[-1, -1, -1], [-1, -1, -1]]], result)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testMutableHashTableWithTensorDefault(self):
    with self.test_session():
      default_val = constant_op.constant(-1, dtypes.int64)
      keys = constant_op.constant(["brain", "salad", "surgery"])
      values = constant_op.constant([0, 1, 2], dtypes.int64)
      table = lookup.MutableHashTable(dtypes.string, dtypes.int64,
                                      default_val)

      table.insert(keys, values).run()
      self.assertAllEqual(3, table.size().eval())

      input_string = constant_op.constant(["brain", "salad", "tank"])
      output = table.lookup(input_string)

      result = output.eval()
      self.assertAllEqual([0, 1, -1], result)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testMutableHashTableInt64String(self):
    with self.test_session():
      default_val = "n/a"
      keys = constant_op.constant([0, 1, 2], dtypes.int64)
      values = constant_op.constant(["brain", "salad", "surgery"])
      table = lookup.MutableHashTable(dtypes.int64, dtypes.string,
                                      default_val)
      self.assertAllEqual(0, table.size().eval())

      table.insert(keys, values).run()
      self.assertAllEqual(3, table.size().eval())

      input_string = constant_op.constant([0, 1, 3], dtypes.int64)
      output = table.lookup(input_string)

      result = output.eval()
      self.assertAllEqual((b"brain", b"salad", b"n/a"), result)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testMapInt64ToFloat(self):
    for float_dtype in [dtypes.float32, dtypes.float64]:
      with self.test_session():
        keys = constant_op.constant([11, 12, 13], dtypes.int64)
        values = constant_op.constant([0.0, 1.1, 2.2], float_dtype)
        default_value = constant_op.constant(-1.5, float_dtype)
        table = lookup.MutableDenseHashTable(
            dtypes.int64, float_dtype, default_value=default_value, empty_key=0)
        self.assertAllEqual(0, table.size().eval())

        table.insert(keys, values).run()
        self.assertAllEqual(3, table.size().eval())

        input_string = constant_op.constant([11, 12, 15], dtypes.int64)
        output = table.lookup(input_string)
        self.assertAllEqual([3], output.get_shape())

        result = output.eval()
        self.assertAllClose([0, 1.1, -1.5], result)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testReprobe(self):
    with self.test_session():
      # Insert 6 keys into a table with 8 buckets.
      # The values are chosen to make sure collisions occur when using GCC STL
      keys = constant_op.constant([11, 12, 13, 19, 20, 21], dtypes.int64)
      values = constant_op.constant([51, 52, 53, 54, 55, 56], dtypes.int64)
      table = lookup.MutableDenseHashTable(
          dtypes.int64,
          dtypes.int64,
          default_value=-1,
          empty_key=0,
          initial_num_buckets=8)
      self.assertAllEqual(0, table.size().eval())

      table.insert(keys, values).run()
      self.assertAllEqual(6, table.size().eval())

      input_string = constant_op.constant([10, 11, 12, 13, 14, 19, 20, 21, 22],
                                          dtypes.int64)
      output = table.lookup(input_string)
      self.assertAllEqual([9], output.get_shape())

      result = output.eval()
      self.assertAllEqual([-1, 51, 52, 53, -1, 54, 55, 56, -1], result)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testCustomEmptyKey(self):
    with self.test_session():
      keys = constant_op.constant([11, 0, 13], dtypes.int64)
      values = constant_op.constant([0, 1, 2], dtypes.int64)
      table = lookup.MutableDenseHashTable(
          dtypes.int64, dtypes.int64, default_value=-1, empty_key=12)
      self.assertAllEqual(0, table.size().eval())

      table.insert(keys, values).run()
      self.assertAllEqual(3, table.size().eval())

      input_string = constant_op.constant([11, 0, 15], dtypes.int64)
      output = table.lookup(input_string)
      self.assertAllEqual([3], output.get_shape())

      result = output.eval()
      self.assertAllEqual([0, 1, -1], result)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testInitializeIndexTable(self):
    vocabulary_file = self._createVocabFile("one_column_2.txt")

    with self.test_session():
      default_value = "UNK"
      key_index = lookup.TextFileIndex.LINE_NUMBER
      value_index = lookup.TextFileIndex.WHOLE_LINE
      table = lookup.HashTable(
          lookup.TextFileInitializer(vocabulary_file, dtypes.int64,
                                     key_index, dtypes.string, value_index),
          default_value)
      table.init.run()

      input_values = constant_op.constant([0, 1, 2, 3], dtypes.int64)
      output = table.lookup(input_values)

      result = output.eval()
      self.assertAllEqual([b"brain", b"salad", b"surgery", b"UNK"], result)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testMultiColumn(self):
    vocabulary_file = os.path.join(self.get_temp_dir(), "three_columns.txt")
    with open(vocabulary_file, "w") as f:
      f.write("\n".join(["0\tbrain\t1", "1\tsalad\t5", "2\tsurgery\t6"]) + "\n")

    with self.test_session():
      default_value = -1
      key_index = 1
      value_index = 2

      table = lookup.HashTable(
          lookup.TextFileInitializer(vocabulary_file, dtypes.string,
                                     key_index, dtypes.int64, value_index),
          default_value)
      table.init.run()

      input_string = constant_op.constant(["brain", "salad", "surgery"])
      output = table.lookup(input_string)

      result = output.eval()
      self.assertAllEqual([1, 5, 6], result)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testInvalidFilenames(self):
    vocabulary_file = self._createVocabFile("filename_shape.txt")

    with self.test_session():
      default_value = -1

      # Invalid data type
      other_type = constant_op.constant(1)
      with self.assertRaises(ValueError):
        lookup.HashTable(
            lookup.TextFileInitializer(
                other_type, dtypes.string, lookup.TextFileIndex.WHOLE_LINE,
                dtypes.int64, lookup.TextFileIndex.LINE_NUMBER),
            default_value)

      # Non-scalar filename
      filenames = constant_op.constant([vocabulary_file, vocabulary_file])
      with self.assertRaises(ValueError):
        lookup.HashTable(
            lookup.TextFileInitializer(
                filenames, dtypes.string, lookup.TextFileIndex.WHOLE_LINE,
                dtypes.int64, lookup.TextFileIndex.LINE_NUMBER),
            default_value)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testIdToStringTable(self):
    vocab_file = self._createVocabFile("feat_to_id_1.txt")
    with self.test_session():
      default_value = "UNK"
      vocab_size = 3
      table = lookup.HashTable(
          lookup.TextFileStringTableInitializer(
              vocab_file, vocab_size=vocab_size),
          default_value)

      table.init.run()

      input_values = constant_op.constant([0, 1, 2, 3], dtypes.int64)

      out = table.lookup(input_values)
      self.assertAllEqual([b"brain", b"salad", b"surgery", b"UNK"], out.eval())
      self.assertEquals(vocab_size, table.size().eval())
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def test_integer_mixed_string_dense(self):
    """Tests mixed dense inputs.
    """
    op = sparse_feature_cross_op.sparse_feature_cross([
        constant_op.constant([[11, 333], [55555, 999999]], dtypes.int64),
        constant_op.constant([['batch1-FC2-F1', 'batch1-FC2-F2'],
                              ['batch2-FC2-F1', 'batch2-FC2-F2']],
                             dtypes.string),
    ])
    expected_out = self._sparse_tensor([[
        '11_X_batch1-FC2-F1', '11_X_batch1-FC2-F2', '333_X_batch1-FC2-F1',
        '333_X_batch1-FC2-F2'
    ], [
        '55555_X_batch2-FC2-F1', '55555_X_batch2-FC2-F2',
        '999999_X_batch2-FC2-F1', '999999_X_batch2-FC2-F2'
    ]])
    with self.test_session() as sess:
      self._assert_sparse_tensor_equals(expected_out, sess.run(op))
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testSparseColumnWithHashBucket(self):
    hashed_sparse = feature_column.sparse_column_with_hash_bucket("wire", 10)
    wire_tensor = sparse_tensor.SparseTensor(
        values=["omar", "stringer", "marlo"],
        indices=[[0, 0], [1, 0], [1, 1]],
        dense_shape=[2, 2])
    features = {"wire": wire_tensor}
    # Test transform features.
    output = feature_column_ops.transform_features(
        features=features, feature_columns=[hashed_sparse])
    self.assertEqual(len(output), 1)
    self.assertIn(hashed_sparse, output)
    with self.test_session():
      self.assertEqual(output[hashed_sparse].values.dtype, dtypes.int64)
      self.assertTrue(
          all(x < 10 and x >= 0 for x in output[hashed_sparse].values.eval()))
      self.assertAllEqual(output[hashed_sparse].indices.eval(),
                          wire_tensor.indices.eval())
      self.assertAllEqual(output[hashed_sparse].dense_shape.eval(),
                          wire_tensor.dense_shape.eval())
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testSparseIntColumnWithHashBucket(self):
    """Tests a sparse column with int values."""
    hashed_sparse = feature_column.sparse_column_with_hash_bucket(
        "wire", 10, dtype=dtypes.int64)
    wire_tensor = sparse_tensor.SparseTensor(
        values=[101, 201, 301],
        indices=[[0, 0], [1, 0], [1, 1]],
        dense_shape=[2, 2])
    features = {"wire": wire_tensor}
    # Test transform features.
    output = feature_column_ops.transform_features(
        features=features, feature_columns=[hashed_sparse])
    self.assertEqual(len(output), 1)
    self.assertIn(hashed_sparse, output)
    with self.test_session():
      self.assertEqual(output[hashed_sparse].values.dtype, dtypes.int64)
      self.assertTrue(
          all(x < 10 and x >= 0 for x in output[hashed_sparse].values.eval()))
      self.assertAllEqual(output[hashed_sparse].indices.eval(),
                          wire_tensor.indices.eval())
      self.assertAllEqual(output[hashed_sparse].dense_shape.eval(),
                          wire_tensor.dense_shape.eval())
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testSparseColumnWithKeysWithDenseInputTensor(self):
    keys_sparse = feature_column.sparse_column_with_keys(
        "wire", ["marlo", "omar", "stringer", "rick"])
    wire_tensor = constant_op.constant(
        [["omar", "stringer"], ["marlo", "rick"]])

    features = {"wire": wire_tensor}
    output = feature_column_ops._Transformer(features).transform(keys_sparse)

    with self.test_session():
      data_flow_ops.tables_initializer().run()
      # While the input is a dense Tensor, the output should be a SparseTensor.
      self.assertIsInstance(output, sparse_tensor.SparseTensor)
      self.assertEqual(output.dtype, dtypes.int64)
      self.assertAllEqual(output.values.eval(), [1, 2, 0, 3])
      self.assertAllEqual(output.indices.eval(),
                          [[0, 0], [0, 1], [1, 0], [1, 1]])
      self.assertAllEqual(output.dense_shape.eval(), [2, 2])
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testSparseColumnWithVocabulary(self):
    vocabulary_file = os.path.join(self.get_temp_dir(), "movies.txt")
    with open(vocabulary_file, "w") as f:
      f.write("\n".join(["marlo", "omar", "stringer"]) + "\n")
    vocab_sparse = feature_column.sparse_column_with_vocabulary_file(
        "wire", vocabulary_file, vocab_size=3)
    wire_tensor = sparse_tensor.SparseTensor(
        values=["omar", "stringer", "marlo"],
        indices=[[0, 0], [1, 0], [1, 1]],
        dense_shape=[2, 2])
    features = {"wire": wire_tensor}
    output = feature_column_ops.transform_features(
        features=features, feature_columns=[vocab_sparse])
    self.assertEqual(len(output), 1)
    self.assertIn(vocab_sparse, output)
    with self.test_session():
      data_flow_ops.tables_initializer().run()
      self.assertEqual(output[vocab_sparse].values.dtype, dtypes.int64)
      self.assertAllEqual(output[vocab_sparse].values.eval(), [1, 2, 0])
      self.assertAllEqual(output[vocab_sparse].indices.eval(),
                          wire_tensor.indices.eval())
      self.assertAllEqual(output[vocab_sparse].dense_shape.eval(),
                          wire_tensor.dense_shape.eval())
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testSparseColumnWithVocabularyWithDenseInputTensor(self):
    vocabulary_file = os.path.join(self.get_temp_dir(), "movies.txt")
    with open(vocabulary_file, "w") as f:
      f.write("\n".join(["marlo", "omar", "stringer"]) + "\n")
    vocab_sparse = feature_column.sparse_column_with_vocabulary_file(
        "wire", vocabulary_file, vocab_size=3)
    wire_tensor = constant_op.constant(
        [["omar", "stringer"], ["marlo", "omar"]])
    features = {"wire": wire_tensor}
    output = feature_column_ops.transform_features(
        features=features, feature_columns=[vocab_sparse])
    self.assertEqual(len(output), 1)
    self.assertIn(vocab_sparse, output)
    with self.test_session():
      data_flow_ops.tables_initializer().run()
      self.assertEqual(output[vocab_sparse].values.dtype, dtypes.int64)
      self.assertAllEqual(output[vocab_sparse].values.eval(), [1, 2, 0, 1])
      self.assertAllEqual(output[vocab_sparse].indices.eval(),
                          [[0, 0], [0, 1], [1, 0], [1, 1]])
      self.assertAllEqual(output[vocab_sparse].dense_shape.eval(), [2, 2])
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testSparseIntColumnWithVocabulary(self):
    """Tests a sparse integer column with vocabulary."""
    vocabulary_file = os.path.join(self.get_temp_dir(), "courses.txt")
    with open(vocabulary_file, "w") as f:
      f.write("\n".join(["101", "201", "301"]) + "\n")
    vocab_sparse = feature_column.sparse_column_with_vocabulary_file(
        "wire", vocabulary_file, vocab_size=3, dtype=dtypes.int64)
    wire_tensor = sparse_tensor.SparseTensor(
        values=[201, 301, 101],
        indices=[[0, 0], [1, 0], [1, 1]],
        dense_shape=[2, 2])
    features = {"wire": wire_tensor}
    output = feature_column_ops.transform_features(
        features=features, feature_columns=[vocab_sparse])
    self.assertEqual(len(output), 1)
    self.assertIn(vocab_sparse, output)
    with self.test_session():
      data_flow_ops.tables_initializer().run()
      self.assertEqual(output[vocab_sparse].values.dtype, dtypes.int64)
      self.assertAllEqual(output[vocab_sparse].values.eval(), [1, 2, 0])
      self.assertAllEqual(output[vocab_sparse].indices.eval(),
                          wire_tensor.indices.eval())
      self.assertAllEqual(output[vocab_sparse].dense_shape.eval(),
                          wire_tensor.dense_shape.eval())
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testSparseIntColumnWithVocabularyWithDenseInputTensor(self):
    """Tests a sparse integer column with vocabulary."""
    vocabulary_file = os.path.join(self.get_temp_dir(), "courses.txt")
    with open(vocabulary_file, "w") as f:
      f.write("\n".join(["101", "201", "301"]) + "\n")
    vocab_sparse = feature_column.sparse_column_with_vocabulary_file(
        "wire", vocabulary_file, vocab_size=3, dtype=dtypes.int64)
    wire_tensor = constant_op.constant([[201, 301], [101, 201]])
    features = {"wire": wire_tensor}
    output = feature_column_ops.transform_features(
        features=features, feature_columns=[vocab_sparse])
    self.assertEqual(len(output), 1)
    self.assertIn(vocab_sparse, output)
    with self.test_session():
      data_flow_ops.tables_initializer().run()
      self.assertEqual(output[vocab_sparse].values.dtype, dtypes.int64)
      self.assertAllEqual(output[vocab_sparse].values.eval(), [1, 2, 0, 1])
      self.assertAllEqual(output[vocab_sparse].indices.eval(),
                          [[0, 0], [0, 1], [1, 0], [1, 1]])
      self.assertAllEqual(output[vocab_sparse].dense_shape.eval(), [2, 2])
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testCrossWithBucketizedColumn(self):
    price_bucket = feature_column.bucketized_column(
        feature_column.real_valued_column("price"), boundaries=[0., 10., 100.])
    country = feature_column.sparse_column_with_hash_bucket(
        "country", hash_bucket_size=5)
    country_price = feature_column.crossed_column(
        [country, price_bucket], hash_bucket_size=15)
    features = {
        "price":
            constant_op.constant([[20.]]),
        "country":
            sparse_tensor.SparseTensor(
                values=["US", "SV"],
                indices=[[0, 0], [0, 1]],
                dense_shape=[1, 2])
    }
    # Test transform features.
    output = feature_column_ops.transform_features(
        features=features, feature_columns=[country_price])
    self.assertEqual(len(output), 1)
    self.assertIn(country_price, output)
    with self.test_session():
      self.assertEqual(output[country_price].values.dtype, dtypes.int64)
      self.assertTrue(
          all(x < 15 and x >= 0 for x in output[country_price].values.eval()))
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def _ids_and_weights_2d(self):
    # Each row demonstrates a test case:
    #   Row 0: multiple valid ids, 1 invalid id, weighted mean
    #   Row 1: all ids are invalid (leaving no valid ids after pruning)
    #   Row 2: no ids to begin with
    #   Row 3: single id
    #   Row 4: all ids have <=0 weight
    indices = [[0, 0], [0, 1], [0, 2], [1, 0], [3, 0], [4, 0], [4, 1]]
    ids = [0, 1, -1, -1, 2, 0, 1]
    weights = [1.0, 2.0, 1.0, 1.0, 3.0, 0.0, -0.5]
    shape = [5, 4]

    sparse_ids = sparse_tensor_lib.SparseTensor(
        constant_op.constant(indices, dtypes.int64),
        constant_op.constant(ids, dtypes.int64),
        constant_op.constant(shape, dtypes.int64))

    sparse_weights = sparse_tensor_lib.SparseTensor(
        constant_op.constant(indices, dtypes.int64),
        constant_op.constant(weights, dtypes.float32),
        constant_op.constant(shape, dtypes.int64))

    return sparse_ids, sparse_weights
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def _maybe_select_class_id(labels, predictions_idx, selected_id=None):
  """If class ID is specified, filter all other classes.

  Args:
    labels: `int64` `Tensor` or `SparseTensor` with shape
      [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of
      target classes for the associated prediction. Commonly, N=1 and `labels`
      has shape [batch_size, num_labels]. [D1, ... DN] must match
      `predictions_idx`.
    predictions_idx: `int64` `Tensor` of class IDs, with shape [D1, ... DN, k]
      where N >= 1. Commonly, N=1 and `predictions_idx` has shape
      [batch size, k].
    selected_id: Int id to select.

  Returns:
    Tuple of `labels` and `predictions_idx`, possibly with classes removed.
  """
  if selected_id is None:
    return labels, predictions_idx
  return (_select_class_id(labels, selected_id),
          _select_class_id(predictions_idx, selected_id))
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testValueTensorIsIdempotent(self):
    predictions = random_ops.random_uniform(
        (10, 3), maxval=3, dtype=dtypes_lib.int64, seed=1)
    labels = random_ops.random_uniform(
        (10, 3), maxval=3, dtype=dtypes_lib.int64, seed=1)
    accuracy, update_op = metrics.streaming_accuracy(predictions, labels)

    with self.test_session() as sess:
      sess.run(variables.local_variables_initializer())

      # Run several updates.
      for _ in range(10):
        sess.run(update_op)

      # Then verify idempotency.
      initial_accuracy = accuracy.eval()
      for _ in range(10):
        self.assertEqual(initial_accuracy, accuracy.eval())