Python tensorflow.python.framework.dtypes 模块,int16() 实例源码

我们从Python开源项目中,提取了以下8个代码示例,用于说明如何使用tensorflow.python.framework.dtypes.int16()

项目:LIE    作者:EmbraceLife    | 项目源码 | 文件源码
def _convert_string_dtype(dtype):
      """Get the type from a string.

      Arguments:
          dtype: A string representation of a type.

      Returns:
          The type requested.

      Raises:
          ValueError: if `dtype` is not supported.
      """
      if dtype == 'float16':
        return dtypes_module.float16
      if dtype == 'float32':
        return dtypes_module.float32
      elif dtype == 'float64':
        return dtypes_module.float64
      elif dtype == 'int16':
        return dtypes_module.int16
      elif dtype == 'int32':
        return dtypes_module.int32
      elif dtype == 'int64':
        return dtypes_module.int64
      elif dtype == 'uint8':
        return dtypes_module.int8
      elif dtype == 'uint16':
        return dtypes_module.uint16
      else:
        raise ValueError('Unsupported dtype:', dtype)
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def testFromCSVWithFeatureSpec(self):
    if not HAS_PANDAS:
      return
    num_batches = 100
    batch_size = 8

    data_path = _make_test_csv_sparse()
    feature_spec = {
        "int": tf.FixedLenFeature(None, dtypes.int16, np.nan),
        "float": tf.VarLenFeature(dtypes.float16),
        "bool": tf.VarLenFeature(dtypes.bool),
        "string": tf.FixedLenFeature(None, dtypes.string, "")
    }

    pandas_df = pd.read_csv(data_path, dtype={"string": object})
    # Pandas insanely uses NaN for empty cells in a string column.
    # And, we can't use Pandas replace() to fix them because nan != nan
    s = pandas_df["string"]
    for i in range(0, len(s)):
      if isinstance(s[i], float) and math.isnan(s[i]):
        pandas_df.set_value(i, "string", "")
    tensorflow_df = df.TensorFlowDataFrame.from_csv_with_feature_spec(
        [data_path],
        batch_size=batch_size,
        shuffle=False,
        feature_spec=feature_spec)

    # These columns were sparse; re-densify them for comparison
    tensorflow_df["float"] = densify.Densify(np.nan)(tensorflow_df["float"])
    tensorflow_df["bool"] = densify.Densify(np.nan)(tensorflow_df["bool"])

    self._assert_pandas_equals_tensorflow(pandas_df,
                                          tensorflow_df,
                                          num_batches=num_batches,
                                          batch_size=batch_size)
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def testFromCSVWithFeatureSpec(self):
    if not HAS_PANDAS:
      return
    num_batches = 100
    batch_size = 8

    data_path = _make_test_csv_sparse()
    feature_spec = {
        "int": tf.FixedLenFeature(None, dtypes.int16, np.nan),
        "float": tf.VarLenFeature(dtypes.float16),
        "bool": tf.VarLenFeature(dtypes.bool),
        "string": tf.FixedLenFeature(None, dtypes.string, "")
    }

    pandas_df = pd.read_csv(data_path, dtype={"string": object})
    # Pandas insanely uses NaN for empty cells in a string column.
    # And, we can't use Pandas replace() to fix them because nan != nan
    s = pandas_df["string"]
    for i in range(0, len(s)):
      if isinstance(s[i], float) and math.isnan(s[i]):
        pandas_df.set_value(i, "string", "")
    tensorflow_df = df.TensorFlowDataFrame.from_csv_with_feature_spec(
        [data_path],
        batch_size=batch_size,
        shuffle=False,
        feature_spec=feature_spec)

    # These columns were sparse; re-densify them for comparison
    tensorflow_df["float"] = densify.Densify(np.nan)(tensorflow_df["float"])
    tensorflow_df["bool"] = densify.Densify(np.nan)(tensorflow_df["bool"])

    self._assert_pandas_equals_tensorflow(pandas_df,
                                          tensorflow_df,
                                          num_batches=num_batches,
                                          batch_size=batch_size)
项目:imperative    作者:yaroslavvb    | 项目源码 | 文件源码
def testConvertBetweenInteger(self):
    try:
      # Make sure converting to between integer types scales appropriately
      with self.test_session():
        self._convert([0, 255], dtypes.uint8, dtypes.int16, [0, 255 * 128])
        self._convert([0, 32767], dtypes.int16, dtypes.uint8, [0, 255])
        # itensor is tf.int32, but attr "T" is set to tf.int16
    except:
      import pdb;
      pdb.post_mortem()
项目:imperative    作者:yaroslavvb    | 项目源码 | 文件源码
def testConvertBetweenInteger(self):
    try:
      # Make sure converting to between integer types scales appropriately
      with self.test_session():
        self._convert([0, 255], dtypes.uint8, dtypes.int16, [0, 255 * 128])
        self._convert([0, 32767], dtypes.int16, dtypes.uint8, [0, 255])
        # itensor is tf.int32, but attr "T" is set to tf.int16
    except:
      import pdb;
      pdb.post_mortem()
项目:imperative    作者:yaroslavvb    | 项目源码 | 文件源码
def testConvertBetweenInteger(self):
    try:
      # Make sure converting to between integer types scales appropriately
      with self.test_session():
        self._convert([0, 255], dtypes.uint8, dtypes.int16, [0, 255 * 128])
        self._convert([0, 32767], dtypes.int16, dtypes.uint8, [0, 255])
        # itensor is tf.int32, but attr "T" is set to tf.int16
    except:
      import pdb;
      pdb.post_mortem()
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def test_input_int16(self):
    data = np.matrix([[1, 2], [3, 4]], dtype=np.int16)
    self._assert_dtype(np.int16, dtypes.int16, data)
    self._assert_dtype(np.int16, dtypes.int16, self._wrap_dict(data))
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testFromCSVWithFeatureSpec(self):
    if not HAS_PANDAS:
      return
    num_batches = 100
    batch_size = 8

    data_path = _make_test_csv_sparse()
    feature_spec = {
        "int": parsing_ops.FixedLenFeature(None, dtypes.int16, np.nan),
        "float": parsing_ops.VarLenFeature(dtypes.float16),
        "bool": parsing_ops.VarLenFeature(dtypes.bool),
        "string": parsing_ops.FixedLenFeature(None, dtypes.string, "")
    }

    pandas_df = pd.read_csv(data_path, dtype={"string": object})
    # Pandas insanely uses NaN for empty cells in a string column.
    # And, we can't use Pandas replace() to fix them because nan != nan
    s = pandas_df["string"]
    for i in range(0, len(s)):
      if isinstance(s[i], float) and math.isnan(s[i]):
        pandas_df.set_value(i, "string", "")
    tensorflow_df = df.TensorFlowDataFrame.from_csv_with_feature_spec(
        [data_path],
        batch_size=batch_size,
        shuffle=False,
        feature_spec=feature_spec)

    # These columns were sparse; re-densify them for comparison
    tensorflow_df["float"] = densify.Densify(np.nan)(tensorflow_df["float"])
    tensorflow_df["bool"] = densify.Densify(np.nan)(tensorflow_df["bool"])

    self._assert_pandas_equals_tensorflow(
        pandas_df,
        tensorflow_df,
        num_batches=num_batches,
        batch_size=batch_size)