我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用tensorflow.python.framework.tensor_shape.scalar()。
def add_evaluation_step(result_tensor, ground_truth_tensor): """Inserts the operations we need to evaluate the accuracy of our results. Args: result_tensor: The new final node that produces results. ground_truth_tensor: The node we feed ground truth data into. Returns: Tuple of (evaluation step, prediction). """ with tf.name_scope('accuracy'): with tf.name_scope('correct_prediction'): prediction = tf.argmax(result_tensor, 1) correct_prediction = tf.equal( prediction, tf.argmax(ground_truth_tensor, 1)) with tf.name_scope('accuracy'): evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) tf.summary.scalar('accuracy', evaluation_step) return evaluation_step, prediction
def add_evaluation_step(result_tensor, ground_truth_tensor): """Inserts the operations we need to evaluate the accuracy of our results. Args: result_tensor: The new final node that produces results. ground_truth_tensor: The node we feed ground truth data into. Returns: Nothing. """ with tf.name_scope('accuracy'): with tf.name_scope('correct_prediction'): correct_prediction = tf.equal(tf.argmax(result_tensor, 1), \ tf.argmax(ground_truth_tensor, 1)) with tf.name_scope('accuracy'): evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) tf.summary.scalar('accuracy', evaluation_step) return evaluation_step
def add_evaluation_step(result_tensor, ground_truth_tensor): """ Brief: Inserts the operations we need to evaluate the accuracy of our results. Args: result_tensor: The new final node that produces results. ground_truth_tensor: The node we feed ground truth data into. Returns: Tuple of (evaluation step, prediction). """ with tf.name_scope('accuracy'): with tf.name_scope('correct_prediction'): prediction = tf.argmax(result_tensor, 1) correct_prediction = tf.equal( prediction, tf.argmax(ground_truth_tensor, 1)) with tf.name_scope('accuracy'): evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) tf.summary.scalar('accuracy', evaluation_step) return evaluation_step, prediction
def __init__(self, table_ref, default_value, initializer): """Construct a table object from a table reference. If requires a table initializer object (subclass of `TableInitializerBase`). It provides the table key and value types, as well as the op to initialize the table. The caller is responsible to execute the initialization op. Args: table_ref: The table reference, i.e. the output of the lookup table ops. default_value: The value to use if a key is missing in the table. initializer: The table initializer to use. """ super(InitializableLookupTableBase, self).__init__( initializer.key_dtype, initializer.value_dtype, table_ref.op.name.split("/")[-1]) self._table_ref = table_ref self._default_value = ops.convert_to_tensor(default_value, dtype=self._value_dtype) self._default_value.get_shape().merge_with(tensor_shape.scalar()) self._init = initializer.initialize(self)
def variable_summaries(var): """Attach a lot of summaries to a Tensor (for TensorBoard visualization).""" with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.summary.scalar('mean', mean) with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar('stddev', stddev) tf.summary.scalar('max', tf.reduce_max(var)) tf.summary.scalar('min', tf.reduce_min(var)) tf.summary.histogram('histogram', var)
def variable_summaries(var, name): """Attach a lot of summaries to a Tensor (for TensorBoard visualization).""" with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.summary.scalar('mean/' + name, mean) with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar('stddev/' + name, stddev) tf.summary.scalar('max/' + name, tf.reduce_max(var)) tf.summary.scalar('min/' + name, tf.reduce_min(var)) tf.summary.histogram(name, var)
def dropout_selu(x, rate, alpha= -1.7580993408473766, fixedPointMean=0.0, fixedPointVar=1.0, noise_shape=None, seed=None, name=None, training=False): """Dropout to a value with rescaling.""" def dropout_selu_impl(x, rate, alpha, noise_shape, seed, name): keep_prob = 1.0 - rate x = ops.convert_to_tensor(x, name="x") if isinstance(keep_prob, numbers.Real) and not 0 < keep_prob <= 1: raise ValueError("keep_prob must be a scalar tensor or a float in the " "range (0, 1], got %g" % keep_prob) keep_prob = ops.convert_to_tensor(keep_prob, dtype=x.dtype, name="keep_prob") keep_prob.get_shape().assert_is_compatible_with(tensor_shape.scalar()) alpha = ops.convert_to_tensor(alpha, dtype=x.dtype, name="alpha") alpha.get_shape().assert_is_compatible_with(tensor_shape.scalar()) if tensor_util.constant_value(keep_prob) == 1: return x noise_shape = noise_shape if noise_shape is not None else array_ops.shape(x) random_tensor = keep_prob random_tensor += random_ops.random_uniform(noise_shape, seed=seed, dtype=x.dtype) binary_tensor = math_ops.floor(random_tensor) ret = x * binary_tensor + alpha * (1-binary_tensor) a = math_ops.sqrt(fixedPointVar / (keep_prob *((1-keep_prob) * math_ops.pow(alpha-fixedPointMean,2) + fixedPointVar))) b = fixedPointMean - a * (keep_prob * fixedPointMean + (1 - keep_prob) * alpha) ret = a * ret + b ret.set_shape(x.get_shape()) return ret with ops.name_scope(name, "dropout", [x]) as name: return utils.smart_cond(training, lambda: dropout_selu_impl(x, rate, alpha, noise_shape, seed, name), lambda: array_ops.identity(x))
def size(self, name=None): """Compute the number of elements in this table. Args: name: A name for the operation (optional). Returns: A scalar tensor containing the number of elements in this table. """ if name is None: name = "%s_Size" % self._name # pylint: disable=protected-access return gen_data_flow_ops._lookup_table_size(self._table_ref, name=name) # pylint: enable=protected-access
def size(self, name=None): """Compute the number of elements in this table. Args: name: A name for the operation (optional). Returns: A scalar tensor containing the number of elements in this table. """ with ops.name_scope(name, "%s_Size" % self._name, [self._table_ref]) as name: # pylint: disable=protected-access return gen_data_flow_ops._lookup_table_size(self._table_ref, name=name) # pylint: enable=protected-access
def _get_event_shape(self): return tensor_shape.scalar()
def size(self, name=None): """Compute the number of elements in this table. Args: name: A name for the operation (optional). Returns: A scalar tensor containing the number of elements in this table. """ with ops.name_scope(name, "%s_Size" % self._name, [self._table_ref]) as name: # pylint: disable=protected-access return gen_data_flow_ops._lookup_table_size(self._table_ref, name=name)