Python tensorflow.python.ops.array_ops 模块,ones() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用tensorflow.python.ops.array_ops.ones()

项目:LIE    作者:EmbraceLife    | 项目源码 | 文件源码
def ones_like(x, dtype=None, name=None):
      """Instantiates an all-ones variable of the same shape as another tensor.

      Arguments:
          x: Keras variable or tensor.
          dtype: String, dtype of returned Keras variable.
               None uses the dtype of x.
          name: String, name for the variable to create.

      Returns:
          A Keras variable with the shape of x filled with ones.

      Example:
      ```python
          >>> from keras import backend as K
          >>> kvar = K.variable(np.random.random((2,3)))
          >>> kvar_ones = K.ones_like(kvar)
          >>> K.eval(kvar_ones)
          array([[ 1.,  1.,  1.],
                 [ 1.,  1.,  1.]], dtype=float32)
"""
  return array_ops.ones_like(x, dtype=dtype, name=name)

```

项目:LIE    作者:EmbraceLife    | 项目源码 | 文件源码
def random_binomial(shape, p=0.0, dtype=None, seed=None):
      """Returns a tensor with random binomial distribution of values.

      Arguments:
          shape: A tuple of integers, the shape of tensor to create.
          p: A float, `0. <= p <= 1`, probability of binomial distribution.
          dtype: String, dtype of returned tensor.
          seed: Integer, random seed.

      Returns:
          A tensor.
      """
      if dtype is None:
        dtype = floatx()
      if seed is None:
        seed = np.random.randint(10e6)
      return array_ops.where(
          random_ops.random_uniform(shape, dtype=dtype, seed=seed) <= p,
          array_ops.ones(shape, dtype=dtype), array_ops.zeros(shape, dtype=dtype))
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def _variance(self):
    var = (self._ones() *
           math_ops.square(self.sigma) * self.df / (self.df - 2))
    # When 1 < df <= 2, variance is infinite.
    inf = np.array(np.inf, dtype=self.dtype.as_numpy_dtype())
    result_where_defined = math_ops.select(
        math_ops.greater(self.df, array_ops.fill(self.batch_shape(), 2.)),
        var,
        array_ops.fill(self.batch_shape(), inf, name="inf"))

    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      return math_ops.select(
          math_ops.greater(self.df, self._ones()),
          result_where_defined,
          array_ops.fill(self.batch_shape(), nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies([
          check_ops.assert_less(
              array_ops.ones((), dtype=self.dtype), self.df,
              message="variance not defined for components of df <= 1"),
      ], result_where_defined)
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def _mode(self):
    mode = (self.a - 1.)/ (self.a_b_sum - 2.)
    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      return math_ops.select(
          math_ops.logical_and(
              math_ops.greater(self.a, 1.),
              math_ops.greater(self.b, 1.)),
          mode,
          array_ops.fill(self.batch_shape(), nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies([
          check_ops.assert_less(
              array_ops.ones((), dtype=self.dtype), self.a,
              message="Mode not defined for components of a <= 1."),
          check_ops.assert_less(
              array_ops.ones((), dtype=self.dtype), self.b,
              message="Mode not defined for components of b <= 1."),
      ], mode)
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def _mode(self):
    mode = ((self.alpha - 1.) /
            (array_ops.expand_dims(self.alpha_sum, dim=-1) -
             math_ops.cast(self.event_shape()[0], self.dtype)))
    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      shape = array_ops.concat(0, (self.batch_shape(), self.event_shape()))
      return math_ops.select(
          math_ops.greater(self.alpha, 1.),
          mode,
          array_ops.fill(shape, nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies([
          check_ops.assert_less(
              array_ops.ones((), dtype=self.dtype), self.alpha,
              message="mode not defined for components of alpha <= 1")
      ], mode)
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def _variance(self):
    var = (self._ones() *
           math_ops.square(self.sigma) * self.df / (self.df - 2))
    # When 1 < df <= 2, variance is infinite.
    inf = np.array(np.inf, dtype=self.dtype.as_numpy_dtype())
    result_where_defined = math_ops.select(
        math_ops.greater(self.df, array_ops.fill(self.batch_shape(), 2.)),
        var,
        array_ops.fill(self.batch_shape(), inf, name="inf"))

    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      return math_ops.select(
          math_ops.greater(self.df, self._ones()),
          result_where_defined,
          array_ops.fill(self.batch_shape(), nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies([
          check_ops.assert_less(
              array_ops.ones((), dtype=self.dtype), self.df,
              message="variance not defined for components of df <= 1"),
      ], result_where_defined)
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def _mode(self):
    mode = ((self.alpha - 1.) /
            (array_ops.expand_dims(self.alpha_sum, dim=-1) -
             math_ops.cast(self.event_shape()[0], self.dtype)))
    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      shape = array_ops.concat(0, (self.batch_shape(), self.event_shape()))
      return math_ops.select(
          math_ops.greater(self.alpha, 1.),
          mode,
          array_ops.fill(shape, nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies([
          check_ops.assert_less(
              array_ops.ones((), dtype=self.dtype), self.alpha,
              message="mode not defined for components of alpha <= 1")
      ], mode)
项目:interprettensor    作者:VigneshSrinivasan10    | 项目源码 | 文件源码
def _ww_lrp(self,R): 
        '''
        LRP according to Eq(12) in https://arxiv.org/pdf/1512.02479v1.pdf
        '''
        self.check_shape(R)

        image_patches = tf.ones([self.in_N, self.Hout,self.Wout, self.kernel_size,self.kernel_size, self.in_depth])
        #pdb.set_trace()
        ww = tf.square(self.weights)
        Z = tf.expand_dims(ww,0)
        #self.Z = tf.expand_dims(tf.tile(tf.reshape(ww, [1,1,self.kernel_size, self.kernel_size, self.in_depth, self.output_depth]), [self.Hout, self.Wout, 1,1,1,1]), 0)
        #self.Z = tf.expand_dims(tf.square(self.weights), 0) * tf.expand_dims(image_patches, -1)
        #self.Zs = tf.reduce_sum(self.Z, [3,4,5], keep_dims=True)
        Zs = tf.reduce_sum(Z, [1,2,3], keep_dims=True)
        result = self.compute_result(Z, Zs)
        return self.restitch_image(result)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testStochasticVariablesWithConstantInitializer(self):
    shape = (10, 20)
    with variable_scope.variable_scope(
        "stochastic_variables",
        custom_getter=sv.make_stochastic_variable_getter(
            dist_cls=dist.NormalWithSoftplusScale,
            dist_kwargs={"validate_args": True},
            param_initializers={
                "loc": np.ones(shape) * 4.,
                "scale": np.ones(shape) * 2.
            })):
      v = variable_scope.get_variable("sv")

    for var in variables.global_variables():
      if "loc" in var.name:
        mu_var = var
      if "scale" in var.name:
        sigma_var = var

    v = ops.convert_to_tensor(v)
    with self.test_session() as sess:
      sess.run(variables.global_variables_initializer())
      self.assertAllEqual(np.ones(shape) * 4., sess.run(mu_var))
      self.assertAllEqual(np.ones(shape) * 2., sess.run(sigma_var))
      self.assertEqual(shape, sess.run(v).shape)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testStochasticVariablesWithCallablePriorInitializer(self):

    def prior_init(shape, dtype):
      return dist.Normal(
          array_ops.zeros(shape, dtype), array_ops.ones(shape, dtype))

    with variable_scope.variable_scope(
        "stochastic_variables",
        custom_getter=sv.make_stochastic_variable_getter(
            dist_cls=dist.NormalWithSoftplusScale, prior=prior_init)):
      w = variable_scope.get_variable("weights", (10, 20))

    x = random_ops.random_uniform((8, 10))
    y = math_ops.matmul(x, w)

    prior_map = vi._find_variational_and_priors(y, None)
    self.assertTrue(isinstance(prior_map[w], dist.Normal))
    elbo = vi.elbo(y, keep_batch_dim=False)

    with self.test_session() as sess:
      sess.run(variables.global_variables_initializer())
      sess.run(elbo)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testGradientWithZeroWeight(self):
    with ops.Graph().as_default():
      random_seed.set_random_seed(0)

      inputs = array_ops.ones((2, 3))
      weights = variable_scope.get_variable(
          'weights',
          shape=[3, 4],
          initializer=init_ops.truncated_normal_initializer())
      predictions = math_ops.matmul(inputs, weights)

      optimizer = momentum_lib.MomentumOptimizer(
          learning_rate=0.001, momentum=0.9)
      loss = loss_ops.mean_pairwise_squared_error(predictions, predictions, 0)

      gradients_to_variables = optimizer.compute_gradients(loss)

      init_op = variables.global_variables_initializer()

      with self.test_session() as sess:
        sess.run(init_op)
        for grad, _ in gradients_to_variables:
          np_grad = sess.run(grad)
          self.assertFalse(np.isnan(np_grad).any())
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testLoss(self):
    """Tests loss calculation."""

    def _input_fn_train():
      # Create 4 rows, one of them (y = x), three of them (y=Not(x))
      # The logistic prediction should be (y = 0.25).
      labels = constant_op.constant([[1], [0], [0], [0]])
      features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),}
      return features, labels

    classifier = dnn.DNNClassifier(
        n_classes=2,
        feature_columns=[feature_column.real_valued_column('x')],
        hidden_units=[3, 3],
        config=run_config.RunConfig(tf_random_seed=1))

    classifier.fit(input_fn=_input_fn_train, steps=5)
    scores = classifier.evaluate(input_fn=_input_fn_train, steps=1)
    self.assertIn('loss', scores)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testLoss(self):
    """Tests loss calculation."""

    def _input_fn_train():
      # Create 4 rows, one of them (y = x), three of them (y=Not(x))
      # The algorithm should learn (y = 0.25).
      labels = constant_op.constant([[1.], [0.], [0.], [0.]])
      features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),}
      return features, labels

    regressor = dnn.DNNRegressor(
        feature_columns=[feature_column.real_valued_column('x')],
        hidden_units=[3, 3],
        config=run_config.RunConfig(tf_random_seed=1))

    regressor.fit(input_fn=_input_fn_train, steps=5)
    scores = regressor.evaluate(input_fn=_input_fn_train, steps=1)
    self.assertIn('loss', scores)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testCheckInputs(self):
    est = estimator.SKCompat(estimator.Estimator(model_fn=linear_model_fn))
    # Lambdas so we have to different objects to compare
    right_features = lambda: np.ones(shape=[7, 8], dtype=np.float32)
    right_labels = lambda: np.ones(shape=[7, 10], dtype=np.int32)
    est.fit(right_features(), right_labels(), steps=1)
    # TODO(wicke): This does not fail for np.int32 because of data_feeder magic.
    wrong_type_features = np.ones(shape=[7, 8], dtype=np.int64)
    wrong_size_features = np.ones(shape=[7, 10])
    wrong_type_labels = np.ones(shape=[7, 10], dtype=np.float32)
    wrong_size_labels = np.ones(shape=[7, 11])
    est.fit(x=right_features(), y=right_labels(), steps=1)
    with self.assertRaises(ValueError):
      est.fit(x=wrong_type_features, y=right_labels(), steps=1)
    with self.assertRaises(ValueError):
      est.fit(x=wrong_size_features, y=right_labels(), steps=1)
    with self.assertRaises(ValueError):
      est.fit(x=right_features(), y=wrong_type_labels, steps=1)
    with self.assertRaises(ValueError):
      est.fit(x=right_features(), y=wrong_size_labels, steps=1)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testLoss(self):
    """Tests loss calculation."""

    def _input_fn_train():
      # Create 4 rows, one of them (y = x), three of them (y=Not(x))
      # The logistic prediction should be (y = 0.25).
      features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),}
      labels = constant_op.constant([[1], [0], [0], [0]])
      return features, labels

    classifier = dnn_linear_combined.DNNLinearCombinedClassifier(
        n_classes=2,
        linear_feature_columns=[feature_column.real_valued_column('x')],
        dnn_feature_columns=[feature_column.real_valued_column('x')],
        dnn_hidden_units=[3, 3],
        config=run_config.RunConfig(tf_random_seed=1))

    classifier.fit(input_fn=_input_fn_train, steps=100)
    scores = classifier.evaluate(input_fn=_input_fn_train, steps=1)
    # Cross entropy = -0.25*log(0.25)-0.75*log(0.75) = 0.562
    self.assertAlmostEqual(0.562, scores['loss'], delta=0.1)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testVariableQuery(self):
    """Tests bias is centered or not."""

    def _input_fn_train():
      # Create 4 rows, three (y = x), one (y=Not(x))
      labels = constant_op.constant([[1], [1], [1], [0]])
      features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),}
      return features, labels

    classifier = dnn_linear_combined.DNNLinearCombinedClassifier(
        linear_feature_columns=[feature_column.real_valued_column('x')],
        dnn_feature_columns=[feature_column.real_valued_column('x')],
        dnn_hidden_units=[3, 3])

    classifier.fit(input_fn=_input_fn_train, steps=500)
    var_names = classifier.get_variable_names()
    self.assertGreater(len(var_names), 3)
    for name in var_names:
      classifier.get_variable_value(name)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testCenteredBias(self):
    """Tests bias is centered or not."""

    def _input_fn_train():
      # Create 4 rows, three (y = x), one (y=Not(x))
      labels = constant_op.constant([[1], [1], [1], [0]])
      features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),}
      return features, labels

    classifier = dnn_linear_combined.DNNLinearCombinedClassifier(
        linear_feature_columns=[feature_column.real_valued_column('x')],
        dnn_feature_columns=[feature_column.real_valued_column('x')],
        dnn_hidden_units=[3, 3],
        enable_centered_bias=True)

    classifier.fit(input_fn=_input_fn_train, steps=1000)
    self.assertIn('binary_logistic_head/centered_bias_weight',
                  classifier.get_variable_names())
    # logodds(0.75) = 1.09861228867
    self.assertAlmostEqual(
        1.0986,
        float(classifier.get_variable_value(
            'binary_logistic_head/centered_bias_weight')[0]),
        places=2)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testDisableCenteredBias(self):
    """Tests bias is centered or not."""

    def _input_fn_train():
      # Create 4 rows, three (y = x), one (y=Not(x))
      labels = constant_op.constant([[1], [1], [1], [0]])
      features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),}
      return features, labels

    classifier = dnn_linear_combined.DNNLinearCombinedClassifier(
        linear_feature_columns=[feature_column.real_valued_column('x')],
        dnn_feature_columns=[feature_column.real_valued_column('x')],
        dnn_hidden_units=[3, 3],
        enable_centered_bias=False)

    classifier.fit(input_fn=_input_fn_train, steps=500)
    self.assertNotIn('centered_bias_weight', classifier.get_variable_names())
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testDNNWeightsBiasesNames(self):
    """Tests the names of DNN weights and biases in the checkpoints."""

    def _input_fn_train():
      # Create 4 rows, three (y = x), one (y=Not(x))
      labels = constant_op.constant([[1], [1], [1], [0]])
      features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),}
      return features, labels

    classifier = dnn_linear_combined.DNNLinearCombinedClassifier(
        linear_feature_columns=[feature_column.real_valued_column('x')],
        dnn_feature_columns=[feature_column.real_valued_column('x')],
        dnn_hidden_units=[3, 3])

    classifier.fit(input_fn=_input_fn_train, steps=5)
    # hiddenlayer_0/weights,hiddenlayer_1/weights and dnn_logits/weights.
    self.assertEquals(3, len(classifier.dnn_weights_))
    # hiddenlayer_0/biases, hiddenlayer_1/biases, dnn_logits/biases.
    self.assertEquals(3, len(classifier.dnn_bias_))
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testHorzConvWithBlankImage(self):
    image = array_ops.ones((1, 10, 10, 1))
    horz_gradients = layers_lib.conv2d_in_plane(
        image,
        weights_initializer=init_ops.constant_initializer([1, -1]),
        kernel_size=[1, 2],
        padding='VALID',
        activation_fn=None)
    init_op = variables_lib.global_variables_initializer()

    with self.test_session() as sess:
      sess.run(init_op)
      result = sess.run(horz_gradients)
      expected = np.zeros((1, 10, 9, 1))

      self.assertAllEqual(result, expected)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testVertConvWithBlankImage(self):
    image = array_ops.ones((1, 10, 10, 1))
    vert_gradients = layers_lib.conv2d_in_plane(
        image,
        weights_initializer=init_ops.constant_initializer([1, -1]),
        kernel_size=[2, 1],
        padding='VALID',
        activation_fn=None)
    init_op = variables_lib.global_variables_initializer()

    with self.test_session() as sess:
      sess.run(init_op)
      result = sess.run(vert_gradients)
      expected = np.zeros((1, 9, 10, 1))

      self.assertAllEqual(result, expected)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def doOutputTest(self, input_shape, tol=1e-3):
    for mu in [0.0, 1e2]:
      for sigma in [1.0, 0.1]:
        input_values = np.random.rand(*input_shape) * sigma + mu
        expected_mean = np.zeros(input_shape[0])
        expected_var = np.ones(input_shape[0])
        with ops.Graph().as_default() as g:
          with self.test_session(graph=g) as sess:
            inputs = constant_op.constant(input_values, shape=input_shape,
                                          dtype=dtypes.float32)
            output_op = _layers.layer_norm(inputs, scope='LN')
            # Initialize all variables
            sess.run(variables_lib.global_variables_initializer())
            # The mean and variance of the output should be close to 0 and 1
            # respectively.
            moments_axis = tuple([i for i in range(1, len(input_shape))])
            outputs = sess.run(output_op)
            # Make sure that there are no NaNs
            self.assertFalse(np.isnan(outputs).any())
            mean = np.mean(outputs, axis=moments_axis)
            var = np.var(outputs, axis=moments_axis)
            self.assertAllClose(mean, expected_mean, rtol=tol, atol=tol)
            self.assertAllClose(var, expected_var, rtol=tol, atol=tol)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testSoftmax3DUnknownSize(self):
    logits = np.ones((2, 3, 2))
    logits[0, 0, 0] = 0
    logits[1, 1, 1] = 0
    logit_placeholder = array_ops.placeholder(
        dtypes.float32, shape=(None, None, 2))
    feed_dict = {logit_placeholder: logits}
    exp_prediction = 0.5 * np.ones((2, 3, 2))
    exp_prediction[0, 0, 0] = self.low
    exp_prediction[0, 0, 1] = self.high
    exp_prediction[1, 1, 0] = self.high
    exp_prediction[1, 1, 1] = self.low

    prediction = _layers.softmax(logit_placeholder)
    with self.test_session() as sess:
      prediction = sess.run(prediction, feed_dict=feed_dict)
      self.assertAllClose(exp_prediction, prediction)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testKnownRankUnknownDimsSucceeds(self):
    height, width = 2, 3

    for dim in range(3):
      placeholder_value = np.ones((height, width, 3))
      shape = [height, width, 3]
      del shape[dim]
      expected = np.ones(shape)

      image = array_ops.placeholder(dtypes.float32, (None, None, 3))
      output = _layers.unit_norm(image, dim=dim, epsilon=1e-6)
      norms = math_ops.sqrt(
          math_ops.reduce_sum(
              math_ops.square(output), reduction_indices=dim))

      with self.test_session():
        actual = norms.eval({image: placeholder_value})
        self.assertAllClose(expected, actual, 1e-4, 1e-4)


# TODO(b/28426988): Add separate tests for non-legacy versions.
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testVars(self):
    metrics.streaming_pearson_correlation(
        predictions=math_ops.to_float(math_ops.range(10)) + array_ops.ones(
            [10, 10]),
        labels=math_ops.to_float(math_ops.range(10)) + array_ops.ones([10, 10]))
    _assert_local_variables(self, (
        'pearson_r/covariance/comoment:0',
        'pearson_r/covariance/count:0',
        'pearson_r/covariance/mean_label:0',
        'pearson_r/covariance/mean_prediction:0',
        'pearson_r/variance_labels/count:0',
        'pearson_r/variance_labels/comoment:0',
        'pearson_r/variance_labels/mean_label:0',
        'pearson_r/variance_labels/mean_prediction:0',
        'pearson_r/variance_predictions/comoment:0',
        'pearson_r/variance_predictions/count:0',
        'pearson_r/variance_predictions/mean_label:0',
        'pearson_r/variance_predictions/mean_prediction:0',))
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testAggregateMultipleMetricsReturnsListsInOrder(self):
    predictions = array_ops.ones((10, 4))
    labels = array_ops.ones((10, 4)) * 3
    names_to_values, names_to_updates = metrics.aggregate_metric_map({
        'm1': metrics.streaming_mean_absolute_error(predictions, labels),
        'm2': metrics.streaming_mean_squared_error(predictions, labels),
    })

    self.assertEqual(2, len(names_to_values))
    self.assertEqual(2, len(names_to_updates))

    with self.test_session() as sess:
      sess.run(variables.local_variables_initializer())
      self.assertEqual(2, names_to_updates['m1'].eval())
      self.assertEqual(4, names_to_updates['m2'].eval())
      self.assertEqual(2, names_to_values['m1'].eval())
      self.assertEqual(4, names_to_values['m2'].eval())
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def test_axis_order_scope(self):
    xz_lt = core.LabeledTensor(array_ops.ones((2, 3)), ['x', 'z'])
    yz_lt = core.LabeledTensor(array_ops.ones((4, 3)), ['y', 'z'])

    _, _, broadcast_axes = core.align(xz_lt, yz_lt)
    self.assertEqual(list(broadcast_axes.keys()), ['x', 'y', 'z'])

    _, _, broadcast_axes = core.align(yz_lt, xz_lt)
    self.assertEqual(list(broadcast_axes.keys()), ['y', 'x', 'z'])

    with core.axis_order_scope(['x', 'y', 'z']):
      _, _, broadcast_axes = core.align(yz_lt, xz_lt)
      self.assertEqual(list(broadcast_axes.keys()), ['x', 'y', 'z'])

    with core.axis_order_scope(['x', 'y']):
      with self.assertRaises(core.AxisOrderError):
        core.align(xz_lt, yz_lt)
      with self.assertRaises(core.AxisOrderError):
        core.align(yz_lt, xz_lt)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def test_invalid(self):
    scalar_lt = core.LabeledTensor(array_ops.ones(()), [])
    x_lt = core.LabeledTensor(array_ops.ones((2,)), ['x'])
    x2_lt = core.LabeledTensor(array_ops.ones((3,)), ['x'])
    y_lt = core.LabeledTensor(array_ops.ones((3,)), ['y'])
    xy_lt = core.LabeledTensor(array_ops.ones((2, 3)), ['x', 'y'])
    xyz_lt = core.LabeledTensor(array_ops.ones((2, 3, 1)), ['x', 'y', 'z'])

    with self.assertRaisesRegexp(ValueError, 'inputs with at least rank'):
      ops.matmul(x_lt, scalar_lt)

    with self.assertRaises(NotImplementedError):
      ops.matmul(x_lt, xyz_lt)

    with self.assertRaisesRegexp(ValueError, 'exactly one axis in common'):
      ops.matmul(x_lt, y_lt)

    with self.assertRaises(NotImplementedError):
      ops.matmul(xy_lt, xy_lt)

    with self.assertRaisesRegexp(ValueError, 'does not match'):
      ops.matmul(x_lt, x2_lt)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def _sample_n(self, n, seed=None):
    # The sampling method comes from the fact that if:
    #   X ~ Normal(0, 1)
    #   Z ~ Chi2(df)
    #   Y = X / sqrt(Z / df)
    # then:
    #   Y ~ StudentT(df).
    shape = array_ops.concat([[n], self.batch_shape()], 0)
    normal_sample = random_ops.random_normal(shape, dtype=self.dtype, seed=seed)
    df = self.df * array_ops.ones(self.batch_shape(), dtype=self.dtype)
    gamma_sample = random_ops.random_gamma(
        [n],
        0.5 * df,
        beta=0.5,
        dtype=self.dtype,
        seed=distribution_util.gen_new_seed(seed, salt="student_t"))
    samples = normal_sample * math_ops.rsqrt(gamma_sample / df)
    return samples * self.scale + self.loc  # Abs(scale) not wanted.
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def _mean(self):
    mean = self.loc * array_ops.ones(self.batch_shape(), dtype=self.dtype)
    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      return array_ops.where(
          math_ops.greater(
              self.df,
              array_ops.ones(self.batch_shape(), dtype=self.dtype)),
          mean,
          array_ops.fill(self.batch_shape(), nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies(
          [
              check_ops.assert_less(
                  array_ops.ones((), dtype=self.dtype),
                  self.df,
                  message="mean not defined for components of df <= 1"),
          ],
          mean)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def _mode(self):
    mode = (self.a - 1.)/ (self.a_b_sum - 2.)
    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      return array_ops.where(
          math_ops.logical_and(
              math_ops.greater(self.a, 1.),
              math_ops.greater(self.b, 1.)),
          mode,
          array_ops.fill(self.batch_shape(), nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies([
          check_ops.assert_less(
              array_ops.ones((), dtype=self.dtype), self.a,
              message="Mode not defined for components of a <= 1."),
          check_ops.assert_less(
              array_ops.ones((), dtype=self.dtype), self.b,
              message="Mode not defined for components of b <= 1."),
      ], mode)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def _sample_n(self, n, seed=None):
    sample_shape = array_ops.concat(([n], array_ops.shape(self.logits)), 0)
    logits = self.logits * array_ops.ones(sample_shape)
    if logits.get_shape().ndims == 2:
      logits_2d = logits
    else:
      logits_2d = array_ops.reshape(logits, [-1, self.event_size])
    np_dtype = self.dtype.as_numpy_dtype()
    minval = np.nextafter(np_dtype(0), np_dtype(1))
    uniform = random_ops.random_uniform(shape=array_ops.shape(logits_2d),
                                        minval=minval,
                                        maxval=1,
                                        dtype=self.dtype,
                                        seed=seed)
    gumbel = - math_ops.log(- math_ops.log(uniform))
    noisy_logits = math_ops.div(gumbel + logits_2d, self.temperature)
    samples = nn_ops.log_softmax(noisy_logits)
    ret = array_ops.reshape(samples, sample_shape)
    return ret
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def _process_matrix(self, matrix, min_rank, event_ndims):
    """Helper to __init__ which gets matrix in batch-ready form."""
    # Pad the matrix so that matmul works in the case of a matrix and vector
    # input.  Keep track if the matrix was padded, to distinguish between a
    # rank 3 tensor and a padded rank 2 tensor.
    # TODO(srvasude): Remove side-effects from functions. Its currently unbroken
    # but error-prone since the function call order may change in the future.
    self._rank_two_event_ndims_one = math_ops.logical_and(
        math_ops.equal(array_ops.rank(matrix), min_rank),
        math_ops.equal(event_ndims, 1))
    left = array_ops.where(self._rank_two_event_ndims_one, 1, 0)
    pad = array_ops.concat(
        [array_ops.ones(
            [left], dtype=dtypes.int32), array_ops.shape(matrix)],
        0)
    return array_ops.reshape(matrix, pad)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def _mode(self):
    mode = ((self.alpha - 1.) /
            (array_ops.expand_dims(self.alpha_sum, dim=-1) -
             math_ops.cast(self.event_shape()[0], self.dtype)))
    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      shape = array_ops.concat((self.batch_shape(), self.event_shape()), 0)
      return array_ops.where(
          math_ops.greater(self.alpha, 1.),
          mode,
          array_ops.fill(shape, nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies([
          check_ops.assert_less(
              array_ops.ones((), dtype=self.dtype), self.alpha,
              message="mode not defined for components of alpha <= 1")
      ], mode)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testSamplingFromBatchOfNormals(self):
    batch_shape = (2,)
    with self.test_session():
      normal = distributions.Normal(
          loc=array_ops.zeros(
              batch_shape, dtype=dtypes.float32),
          scale=array_ops.ones(
              batch_shape, dtype=dtypes.float32))

      qdist = distributions.QuantizedDistribution(
          distribution=normal, lower_cutoff=0., upper_cutoff=None)

      samps = qdist.sample(5000, seed=42)
      samps_v = samps.eval()

      # With lower_cutoff = 0, the interval j=0 is (-infty, 0], which holds 1/2
      # of the mass of the normals.
      # rtol chosen to be 2x as large as necessary to pass.
      self.assertAllClose([0.5, 0.5], (samps_v == 0).mean(axis=0), rtol=0.03)

      # The interval j=1 is (0, 1], which is from the mean to one standard
      # deviation out.  This should contain 0.6827 / 2 of the mass.
      self.assertAllClose(
          [0.6827 / 2, 0.6827 / 2], (samps_v == 1).mean(axis=0), rtol=0.03)
项目:LIE    作者:EmbraceLife    | 项目源码 | 文件源码
def ones(shape, dtype=None, name=None):
      """Instantiates an all-ones tensor variable and returns it.

      Arguments:
          shape: Tuple of integers, shape of returned Keras variable.
          dtype: String, data type of returned Keras variable.
          name: String, name of returned Keras variable.

      Returns:
          A Keras variable, filled with `1.0`.

      Example:
      ```python
          >>> from keras import backend as K
          >>> kvar = K.ones((3,4))
          >>> K.eval(kvar)
          array([[ 1.,  1.,  1.,  1.],
                 [ 1.,  1.,  1.,  1.],
                 [ 1.,  1.,  1.,  1.]], dtype=float32)
"""
  if dtype is None:
    dtype = floatx()
  shape = tuple(map(int, shape))
  tf_dtype = _convert_string_dtype(dtype)
  return variable(
      init_ops.constant_initializer(1., dtype=tf_dtype)(shape), dtype, name)

```

项目:LIE    作者:EmbraceLife    | 项目源码 | 文件源码
def get_constants(self, inputs, training=None):
            constants = []
            if self.implementation == 0 and 0 < self.dropout < 1:
              ones = K.zeros_like(inputs)
              ones = K.sum(ones, axis=1)
              ones += 1

              def dropped_inputs():
                return K.dropout(ones, self.dropout)

              dp_mask = [
                  K.in_train_phase(dropped_inputs, ones, training=training)
                  for _ in range(4)
              ]
              constants.append(dp_mask)
            else:
              constants.append([K.cast_to_floatx(1.) for _ in range(4)])

            if 0 < self.recurrent_dropout < 1:
              shape = list(self.kernel_shape)
              shape[-1] = self.filters
              ones = K.zeros_like(inputs)
              ones = K.sum(ones, axis=1)
              ones = self.input_conv(ones, K.zeros(shape), padding=self.padding)
              ones += 1.

              def dropped_inputs():  # pylint: disable=function-redefined
                return K.dropout(ones, self.recurrent_dropout)

              rec_dp_mask = [
                  K.in_train_phase(dropped_inputs, ones, training=training)
                  for _ in range(4)
              ]
              constants.append(rec_dp_mask)
            else:
              constants.append([K.cast_to_floatx(1.) for _ in range(4)])
            return constants
项目:LIE    作者:EmbraceLife    | 项目源码 | 文件源码
def __init__(self,
                       axis=-1,
                       momentum=0.99,
                       epsilon=1e-3,
                       center=True,
                       scale=True,
                       beta_initializer='zeros',
                       gamma_initializer='ones',
                       moving_mean_initializer='zeros',
                       moving_variance_initializer='ones',
                       beta_regularizer=None,
                       gamma_regularizer=None,
                       beta_constraint=None,
                       gamma_constraint=None,
                       **kwargs):
            self.supports_masking = True
            super(BatchNormalization, self).__init__(
                axis=axis,
                momentum=momentum,
                epsilon=epsilon,
                center=center,
                scale=scale,
                beta_initializer=initializers.get(beta_initializer),
                gamma_initializer=initializers.get(gamma_initializer),
                moving_mean_initializer=initializers.get(moving_mean_initializer),
                moving_variance_initializer=initializers.get(
                    moving_variance_initializer),
                beta_regularizer=regularizers.get(beta_regularizer),
                gamma_regularizer=regularizers.get(gamma_regularizer),
                **kwargs
            )
            # TODO(fchollet): move weight constraint support to core layers.
            self.beta_constraint = constraints.get(beta_constraint)
            self.gamma_constraint = constraints.get(gamma_constraint)
项目:LIE    作者:EmbraceLife    | 项目源码 | 文件源码
def get_constants(self, inputs, training=None):
            constants = []
            if self.implementation != 0 and 0 < self.dropout < 1:
              input_shape = K.int_shape(inputs)
              input_dim = input_shape[-1]
              ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1)))
              ones = K.tile(ones, (1, int(input_dim)))

              def dropped_inputs():
                return K.dropout(ones, self.dropout)

              dp_mask = K.in_train_phase(dropped_inputs, ones, training=training)
              constants.append(dp_mask)
            else:
              constants.append(K.cast_to_floatx(1.))

            if 0 < self.recurrent_dropout < 1:
              ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1)))
              ones = K.tile(ones, (1, self.units))

              def dropped_inputs():  # pylint: disable=function-redefined
                return K.dropout(ones, self.recurrent_dropout)

              rec_dp_mask = K.in_train_phase(dropped_inputs, ones, training=training)
              constants.append(rec_dp_mask)
            else:
              constants.append(K.cast_to_floatx(1.))
            return constants
项目:LIE    作者:EmbraceLife    | 项目源码 | 文件源码
def get_constants(self, inputs, training=None):
            constants = []
            if self.implementation != 0 and 0 < self.dropout < 1:
              input_shape = K.int_shape(inputs)
              input_dim = input_shape[-1]
              ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1)))
              ones = K.tile(ones, (1, int(input_dim)))

              def dropped_inputs():
                return K.dropout(ones, self.dropout)

              dp_mask = [
                  K.in_train_phase(dropped_inputs, ones, training=training)
                  for _ in range(3)
              ]
              constants.append(dp_mask)
            else:
              constants.append([K.cast_to_floatx(1.) for _ in range(3)])

            if 0 < self.recurrent_dropout < 1:
              ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1)))
              ones = K.tile(ones, (1, self.units))

              def dropped_inputs():  # pylint: disable=function-redefined
                return K.dropout(ones, self.recurrent_dropout)

              rec_dp_mask = [
                  K.in_train_phase(dropped_inputs, ones, training=training)
                  for _ in range(3)
              ]
              constants.append(rec_dp_mask)
            else:
              constants.append([K.cast_to_floatx(1.) for _ in range(3)])
            return constants
项目:LIE    作者:EmbraceLife    | 项目源码 | 文件源码
def get_constants(self, inputs, training=None):
            constants = []
            if self.implementation != 0 and 0 < self.dropout < 1:
              input_shape = K.int_shape(inputs)
              input_dim = input_shape[-1]
              ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1)))
              ones = K.tile(ones, (1, int(input_dim)))

              def dropped_inputs():
                return K.dropout(ones, self.dropout)

              dp_mask = [
                  K.in_train_phase(dropped_inputs, ones, training=training)
                  for _ in range(4)
              ]
              constants.append(dp_mask)
            else:
              constants.append([K.cast_to_floatx(1.) for _ in range(4)])

            if 0 < self.recurrent_dropout < 1:
              ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1)))
              ones = K.tile(ones, (1, self.units))

              def dropped_inputs():  # pylint: disable=function-redefined
                return K.dropout(ones, self.recurrent_dropout)

              rec_dp_mask = [
                  K.in_train_phase(dropped_inputs, ones, training=training)
                  for _ in range(4)
              ]
              constants.append(rec_dp_mask)
            else:
              constants.append([K.cast_to_floatx(1.) for _ in range(4)])
            return constants
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def unit_norm(inputs, dim, epsilon=1e-7, scope=None):
  """Normalizes the given input across the specified dimension to unit length.

  Note that the rank of `input` must be known.

  Args:
    inputs: A `Tensor` of arbitrary size.
    dim: The dimension along which the input is normalized.
    epsilon: A small value to add to the inputs to avoid dividing by zero.
    scope: Optional scope for variable_scope.

  Returns:
    The normalized `Tensor`.

  Raises:
    ValueError: If dim is smaller than the number of dimensions in 'inputs'.
  """
  with variable_scope.variable_scope(scope, 'UnitNorm', [inputs]):
    if not inputs.get_shape():
      raise ValueError('The input rank must be known.')
    input_rank = len(inputs.get_shape().as_list())
    if dim < 0 or dim >= input_rank:
      raise ValueError(
          'dim must be positive but smaller than the input rank.')

    lengths = math_ops.sqrt(epsilon + math_ops.reduce_sum(
        math_ops.square(inputs), dim, True))
    multiples = []
    if dim > 0:
      multiples.append(array_ops.ones([dim], dtypes.int32))
    multiples.append(array_ops.slice(array_ops.shape(inputs), [dim], [1]))
    if dim < (input_rank - 1):
      multiples.append(array_ops.ones([input_rank - 1 - dim], dtypes.int32))
    multiples = array_ops.concat(0, multiples)
    return math_ops.div(inputs, array_ops.tile(lengths, multiples))
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def _mean(self):
    mean = self.beta / (self.alpha - 1.)
    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      return math_ops.select(
          self.alpha > 1., mean,
          array_ops.fill(self.batch_shape(), nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies([
          check_ops.assert_less(
              array_ops.ones((), self.dtype), self.alpha,
              message="mean not defined for components of self.alpha <= 1"),
      ], mean)
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def _det(self):
    det = array_ops.ones(self.batch_shape(), dtype=self.dtype)
    det.set_shape(self.get_batch_shape())
    return det
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def _mean(self):
    mean = self.mu * self._ones()
    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      return math_ops.select(
          math_ops.greater(self.df, self._ones()), mean,
          array_ops.fill(self.batch_shape(), nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies([
          check_ops.assert_less(
              array_ops.ones((), dtype=self.dtype), self.df,
              message="mean not defined for components of df <= 1"),
      ], mean)
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def _ones(self):
    return array_ops.ones(self.batch_shape(), dtype=self.dtype)
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def _assert_valid_sample(self, x):
    """Check x for proper shape, values, then return tensor version."""
    if not self.validate_args: return x
    return control_flow_ops.with_dependencies([
        check_ops.assert_positive(
            x,
            message="Negative events lie outside Beta distribution support."),
        check_ops.assert_less(
            x, array_ops.ones((), self.dtype),
            message="Event>=1 lies outside Beta distribution support."),
    ], x)
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def _mode(self):
    mode = (self.alpha - 1.) / self.beta
    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      return math_ops.select(
          self.alpha >= 1.,
          mode,
          array_ops.fill(self.batch_shape(), nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies([
          check_ops.assert_less(
              array_ops.ones((), self.dtype),
              self.alpha,
              message="mode not defined for components of alpha <= 1"),
          ], mode)
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def _assert_valid_sample(self, x):
    if not self.validate_args: return x
    return control_flow_ops.with_dependencies([
        check_ops.assert_positive(x),
        distribution_util.assert_close(
            array_ops.ones((), dtype=self.dtype),
            math_ops.reduce_sum(x, reduction_indices=[-1])),
    ], x)
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def _prob(self, x):
    broadcasted_x = x * array_ops.ones(self.batch_shape())
    return math_ops.select(
        math_ops.is_nan(broadcasted_x),
        broadcasted_x,
        math_ops.select(
            math_ops.logical_or(broadcasted_x < self.a,
                                broadcasted_x > self.b),
            array_ops.zeros_like(broadcasted_x),
            (1. / self.range()) * array_ops.ones_like(broadcasted_x)))