Python tensorflow.python.ops.init_ops 模块,random_uniform_initializer() 实例源码

我们从Python开源项目中,提取了以下9个代码示例,用于说明如何使用tensorflow.python.ops.init_ops.random_uniform_initializer()

项目:GORU-tensorflow    作者:jingli9111    | 项目源码 | 文件源码
def __call__(self, inputs, state, scope=None):
        with vs.variable_scope(scope or "eunn_cell"):

            state = _eunn_loop(state, self._capacity, self.diag_vec, self.off_vec, self.diag, self._fft)

            input_matrix_init = init_ops.random_uniform_initializer(-0.01, 0.01)
            if self._comp:
                input_matrix_re = vs.get_variable("U_re", [inputs.get_shape()[-1], self._hidden_size], initializer=input_matrix_init)
                input_matrix_im = vs.get_variable("U_im", [inputs.get_shape()[-1], self._hidden_size], initializer=input_matrix_init)
                inputs_re = math_ops.matmul(inputs, input_matrix_re)
                inputs_im = math_ops.matmul(inputs, input_matrix_im)
                inputs = math_ops.complex(inputs_re, inputs_im)
            else:
                input_matrix = vs.get_variable("U", [inputs.get_shape()[-1], self._hidden_size], initializer=input_matrix_init)
                inputs = math_ops.matmul(inputs, input_matrix)

            bias = vs.get_variable("modReLUBias", [self._hidden_size], initializer=init_ops.constant_initializer())
            output = self._activation((inputs + state), bias, self._comp)

        return output, output
项目:DL-Benchmarks    作者:DL-Benchmarks    | 项目源码 | 文件源码
def __call__(self, inputs, state, scope=None):
    """Run the cell on embedded inputs."""
    with vs.variable_scope(scope or type(self).__name__):  # "EmbeddingWrapper"
      with ops.device("/cpu:0"):
        if self._embedding:
          embedding = self._embedding
        else:
          if self._initializer:
            initializer = self._initializer
          elif vs.get_variable_scope().initializer:
            initializer = vs.get_variable_scope().initializer
          else:
            # Default initializer for embeddings should have variance=1.
            sqrt3 = math.sqrt(3)  # Uniform(-sqrt(3), sqrt(3)) has variance=1.
            initializer = init_ops.random_uniform_initializer(-sqrt3, sqrt3)
          embedding = vs.get_variable("embedding", [self._embedding_classes,
                                                    self._cell.input_size],
                                      initializer=initializer)
        embedded = embedding_ops.embedding_lookup(
            embedding, array_ops.reshape(inputs, [-1]))
    return self._cell(embedded, state)
项目:diversity_based_attention    作者:PrekshaNema25    | 项目源码 | 文件源码
def __call__(self, inputs, state, scope=None):
    """Run the cell on embedded inputs."""
    with vs.variable_scope(scope or type(self).__name__):  # "EmbeddingWrapper"
      with ops.device("/cpu:0"):
        if self._initializer:
          initializer = self._initializer
        elif vs.get_variable_scope().initializer:
          initializer = vs.get_variable_scope().initializer
        else:
          # Default initializer for embeddings should have variance=1.
          sqrt3 = math.sqrt(3)  # Uniform(-sqrt(3), sqrt(3)) has variance=1.
          initializer = init_ops.random_uniform_initializer(-sqrt3, sqrt3)

        if type(state) is tuple:
          data_type = state[0].dtype
        else:
          data_type = state.dtype

        embedding = vs.get_variable(
            "embedding", [self._embedding_classes, self._embedding_size],
            initializer=initializer,
            dtype=data_type)
        embedded = embedding_ops.embedding_lookup(
            embedding, array_ops.reshape(inputs, [-1]))
    return self._cell(embedded, state)
项目:ROLO    作者:Guanghan    | 项目源码 | 文件源码
def __call__(self, inputs, state, scope=None):
    """Run the cell on embedded inputs."""
    with vs.variable_scope(scope or type(self).__name__):  # "EmbeddingWrapper"
      with ops.device("/cpu:0"):
        if self._initializer:
          initializer = self._initializer
        elif vs.get_variable_scope().initializer:
          initializer = vs.get_variable_scope().initializer
        else:
          # Default initializer for embeddings should have variance=1.
          sqrt3 = math.sqrt(3)  # Uniform(-sqrt(3), sqrt(3)) has variance=1.
          initializer = init_ops.random_uniform_initializer(-sqrt3, sqrt3)

        if type(state) is tuple:
          data_type = state[0].dtype
        else:
          data_type = state.dtype

        embedding = vs.get_variable(
            "embedding", [self._embedding_classes, self._embedding_size],
            initializer=initializer,
            dtype=data_type)
        embedded = embedding_ops.embedding_lookup(
            embedding, array_ops.reshape(inputs, [-1]))
    return self._cell(embedded, state)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testJITVariableSeed(self):
    """Test that the stateful initializer is not marked for compilation.

    XLA does not currently support seeded initialization and XLA initializers
    therefore return different values than non-XLA counterparts.  Here
    we ensure that if we can disable JIT compilation for the initializers and
    get the same variable values as if no JIT compilation happened.
    """
    def create_ops():
      with variable_scope.variable_scope(
          "root",
          initializer=init_ops.random_uniform_initializer(
              -0.1, 0.1, seed=2)):
        inputs = variable_scope.get_variable("var", (1,))
        return inputs
    _, v_false_1 = self.compute(False, create_ops)
    _, v_false_2 = self.compute(False, create_ops)
    _, v_true_1 = self.compute(enable_jit_nonstateful, create_ops)
    _, v_true_2 = self.compute(enable_jit_nonstateful, create_ops)
    self.assertAllClose(v_false_1, v_false_2)
    self.assertAllClose(v_true_1, v_true_2)
    self.assertAllClose(v_false_1, v_true_1)
项目:LIE    作者:EmbraceLife    | 项目源码 | 文件源码
def random_uniform_variable(shape, low, high, dtype=None, name=None, seed=None):
      """Instantiates a variable with values drawn from a uniform distribution.

      Arguments:
          shape: Tuple of integers, shape of returned Keras variable.
          low: Float, lower boundary of the output interval.
          high: Float, upper boundary of the output interval.
          dtype: String, dtype of returned Keras variable.
          name: String, name of returned Keras variable.
          seed: Integer, random seed.

      Returns:
          A Keras variable, filled with drawn samples.

      Example:
      ```python
          # TensorFlow example
          >>> kvar = K.random_uniform_variable((2,3), 0, 1)
          >>> kvar
          <tensorflow.python.ops.variables.Variable object at 0x10ab40b10>
          >>> K.eval(kvar)
          array([[ 0.10940075,  0.10047495,  0.476143  ],
                 [ 0.66137183,  0.00869417,  0.89220798]], dtype=float32)
"""
  if dtype is None:
    dtype = floatx()
  shape = tuple(map(int, shape))
  tf_dtype = _convert_string_dtype(dtype)
  if seed is None:
    # ensure that randomness is conditioned by the Numpy RNG
    seed = np.random.randint(10e8)
  value = init_ops.random_uniform_initializer(
      low, high, dtype=tf_dtype, seed=seed)(shape)
  return variable(value, dtype=dtype, name=name)

```

项目:GORU-tensorflow    作者:jingli9111    | 项目源码 | 文件源码
def __call__(self, inputs, state, scope=None):
        with vs.variable_scope(scope or "goru_cell"):

            U_init = init_ops.random_uniform_initializer(-0.01, 0.01)
            b_init = init_ops.constant_initializer(2.)
            mod_b_init = init_ops.constant_initializer(0.01)

            U = vs.get_variable("U", [inputs.get_shape()[-1], self._hidden_size * 3], dtype=tf.float32, initializer = U_init)
            Ux = math_ops.matmul(inputs, U)
            U_cx, U_rx, U_gx = array_ops.split(Ux, 3, axis=1)

            W_r = vs.get_variable("W_r", [self._hidden_size, self._hidden_size], dtype=tf.float32, initializer = U_init)
            W_g = vs.get_variable("W_g", [self._hidden_size, self._hidden_size], dtype=tf.float32, initializer = U_init)
            W_rh = math_ops.matmul(state, W_r)
            W_gh = math_ops.matmul(state, W_g)

            bias_r = vs.get_variable("bias_r", [self._hidden_size], dtype=tf.float32, initializer = b_init)
            bias_g = vs.get_variable("bias_g", [self._hidden_size], dtype=tf.float32)
            bias_c = vs.get_variable("bias_c", [self._hidden_size], dtype=tf.float32, initializer = mod_b_init)


            r_tmp = U_rx + W_rh + bias_r
            g_tmp = U_gx + W_gh + bias_g
            r = math_ops.sigmoid(r_tmp)

            g = math_ops.sigmoid(g_tmp)

            Unitaryh = _eunn_loop(state, self._capacity, self.diag_vec, self.off_vec, self.diag, self._fft)
            c = modrelu(math_ops.multiply(r, Unitaryh) + U_cx, bias_c, False)
            new_state = math_ops.multiply(g, state) +  math_ops.multiply(1 - g, c)

        return new_state, new_state
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def testJITCreateOpsLambda(self):
    """Test several ways of customizing the compilation attribute."""
    def create_ops():
      with variable_scope.variable_scope(
          "root",
          initializer=init_ops.random_uniform_initializer(
              -0.1, 0.1, seed=2)):
        inputs = random_ops.random_uniform((1,), seed=1)
        return inputs
    v_false_1_t, v_false_1 = self.compute(False, create_ops)
    _, v_false_2 = self.compute(False, create_ops)
    v_true_1_t, v_true_1 = self.compute(enable_jit_nonstateful, create_ops)
    _, v_true_2 = self.compute(enable_jit_nonstateful, create_ops)
    v_all_true_t, _ = self.compute(True, create_ops)
    self.assertEqual(False, v_false_1_t.op.get_attr("_XlaCompile"))
    v_true_1_t_sampler_op = v_true_1_t.graph.get_operation_by_name(
        "root/random_uniform/RandomUniform")
    v_all_true_t_sampler_op = v_all_true_t.graph.get_operation_by_name(
        "root/random_uniform/RandomUniform")

    self.assertEqual(False, v_true_1_t_sampler_op.get_attr("_XlaCompile"))
    self.assertEqual(True, v_all_true_t_sampler_op.get_attr("_XlaCompile"))

    self.assertEqual(True, v_true_1_t.op.get_attr("_XlaCompile"))
    self.assertEqual(True, v_all_true_t.op.get_attr("_XlaCompile"))

    # Additionally ensure that where no JIT compilation happens on the
    # random_uniform op, the output values are identical to the case
    # where no JIT compilation happens anywhere.
    self.assertAllClose(v_false_1, v_false_2)
    self.assertAllClose(v_true_1, v_true_2)
    self.assertAllClose(v_false_1, v_true_1)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def benchmarkTfRNNLSTMTraining(self):
    test_configs = self._GetTestConfig()
    for config_name, config in test_configs.items():
      num_layers = config["num_layers"]
      num_units = config["num_units"]
      batch_size = config["batch_size"]
      seq_length = config["seq_length"]

      with ops.Graph().as_default(), ops.device("/gpu:0"):
        inputs = seq_length * [
            array_ops.zeros([batch_size, num_units], dtypes.float32)
        ]
        initializer = init_ops.random_uniform_initializer(-0.01, 0.01, seed=127)

        cell = core_rnn_cell_impl.LSTMCell(
            num_units=num_units, initializer=initializer, state_is_tuple=True)
        multi_cell = core_rnn_cell_impl.MultiRNNCell(
            [cell() for _ in range(num_layers)])
        outputs, final_state = core_rnn.static_rnn(
            multi_cell, inputs, dtype=dtypes.float32)
        trainable_variables = ops.get_collection(
            ops.GraphKeys.TRAINABLE_VARIABLES)
        gradients = gradients_impl.gradients([outputs, final_state],
                                             trainable_variables)
        training_op = control_flow_ops.group(*gradients)
        self._BenchmarkOp(training_op, "tf_rnn_lstm %s %s" %
                          (config_name, self._GetConfigDesc(config)))