Python tensorflow.python.ops.init_ops 模块,random_normal_initializer() 实例源码

我们从Python开源项目中,提取了以下9个代码示例,用于说明如何使用tensorflow.python.ops.init_ops.random_normal_initializer()

项目:u8m_test    作者:hxkk    | 项目源码 | 文件源码
def conv_layer(self, bottom, in_channels, out_channels, name):
        with tf.variable_scope(name):
            filter_size_h, filter_size_w = self.__convKernelSize

            filt = tf.get_variable(name=name + "_filters", 
                                   shape=[filter_size_h, filter_size_w, in_channels, out_channels], 
                                   initializer=init_ops.random_normal_initializer(stddev=0.01))
            conv_biases = tf.get_variable(name=name + "_biases", 
                                          shape=[out_channels], 
                                          initializer=init_ops.random_normal_initializer(stddev=0.01)) 

            def _inner_conv(bott):
                conv = tf.nn.conv2d(bott, filt, [1, 1, 1, 1], padding='SAME')
                bias = tf.nn.bias_add(conv, conv_biases)
                relu = tf.nn.relu(bias)
                return relu

            _bottoms = tf.unstack(bottom, axis=0)
            output = tf.stack([_inner_conv(bott) for bott in _bottoms], axis=0)
            return output
项目:LIE    作者:EmbraceLife    | 项目源码 | 文件源码
def random_normal_variable(shape, mean, scale, dtype=None, name=None,
                               seed=None):
      """Instantiates a variable with values drawn from a normal distribution.

      Arguments:
          shape: Tuple of integers, shape of returned Keras variable.
          mean: Float, mean of the normal distribution.
          scale: Float, standard deviation of the normal distribution.
          dtype: String, dtype of returned Keras variable.
          name: String, name of returned Keras variable.
          seed: Integer, random seed.

      Returns:
          A Keras variable, filled with drawn samples.

      Example:
      ```python
          # TensorFlow example
          >>> kvar = K.random_normal_variable((2,3), 0, 1)
          >>> kvar
          <tensorflow.python.ops.variables.Variable object at 0x10ab12dd0>
          >>> K.eval(kvar)
          array([[ 1.19591331,  0.68685907, -0.63814116],
                 [ 0.92629528,  0.28055015,  1.70484698]], dtype=float32)
"""
  if dtype is None:
    dtype = floatx()
  shape = tuple(map(int, shape))
  tf_dtype = _convert_string_dtype(dtype)
  if seed is None:
    # ensure that randomness is conditioned by the Numpy RNG
    seed = np.random.randint(10e8)
  value = init_ops.random_normal_initializer(
      mean, scale, dtype=tf_dtype, seed=seed)(shape)
  return variable(value, dtype=dtype, name=name)

```

项目:u8m_test    作者:hxkk    | 项目源码 | 文件源码
def separable_conv(self, bottom, in_channels, out_channels, name):
        with tf.variable_scope(name):
            filter_size_h = 1
            filter_size_w = 1

            filt = tf.get_variable(name=name + "_filters", 
                                   shape=[filter_size_h, filter_size_w, in_channels, out_channels], 
                                   initializer=init_ops.random_normal_initializer(stddev=0.01))
            conv_biases = tf.get_variable(name=name + "_biases", shape=[out_channels], initializer=init_ops.random_normal_initializer(stddev=0.01)) 

            conv = tf.nn.conv2d(bottom, filt, [1, 1, 1, 1], padding='SAME')
            bias = tf.nn.bias_add(conv, conv_biases)
            relu = tf.nn.relu(bias)
            return relu
项目:u8m_test    作者:hxkk    | 项目源码 | 文件源码
def _conv(self, input, in_channels, out_channels, name):
        with tf.variable_scope(name):
            filter_size_h, filter_size_w = self.__convKernelSize

            filt = tf.get_variable(name=name + "_filters", 
                                   shape=[filter_size_h, filter_size_w, in_channels, out_channels], 
                                   initializer=init_ops.random_normal_initializer(stddev=0.01))
            conv_biases = tf.get_variable(name=name + "_biases", 
                                          shape=[out_channels], 
                                          initializer=init_ops.random_normal_initializer(stddev=0.01)) 

            conv = tf.nn.conv2d(input, filt, [1, 1, 1, 1], padding='SAME')
            bias = tf.nn.bias_add(conv, conv_biases)
            relu = tf.nn.relu(bias)
            return relu
项目:u8m_test    作者:hxkk    | 项目源码 | 文件源码
def fc_layer(self, bottom, out_size, name):
        with tf.variable_scope(name):
            _, _height, _width, _channel = bottom.get_shape().as_list() 
            size = _height*_width*_channel
            weights = tf.get_variable(name=name + "_weights", shape = [size, out_size], initializer=init_ops.random_normal_initializer(stddev=0.01))
            biases = tf.get_variable(name=name + "_biases", shape=[out_size], initializer=init_ops.random_normal_initializer(stddev=0.01)) 
            print weights
            x = tf.reshape(bottom, [-1, size])
            fc = tf.nn.bias_add(tf.matmul(x, weights), biases)
            return fc
项目:u8m_test    作者:hxkk    | 项目源码 | 文件源码
def _fc(self, bottom, out_size, name):
        with tf.variable_scope(name):
            _, size = bottom.get_shape().as_list() 
            weights = tf.get_variable(name=name + "_weights", shape = [size, out_size], initializer=init_ops.random_normal_initializer(stddev=0.01))
            biases = tf.get_variable(name=name + "_biases", shape=[out_size], initializer=init_ops.random_normal_initializer(stddev=0.01)) 
            print weights
            fc = tf.nn.bias_add(tf.matmul(bottom, weights), biases)
            return fc
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def linear_regression(x, y, init_mean=None, init_stddev=1.0):
  """Creates linear regression TensorFlow subgraph.

  Args:
    x: tensor or placeholder for input features.
    y: tensor or placeholder for target.
    init_mean: the mean value to use for initialization.
    init_stddev: the standard devation to use for initialization.

  Returns:
    Predictions and loss tensors.

  Side effects:
    The variables linear_regression.weights and linear_regression.bias are
    initialized as follows.  If init_mean is not None, then initialization
    will be done using a random normal initializer with the given init_mean
    and init_stddv.  (These may be set to 0.0 each if a zero initialization
    is desirable for convex use cases.)  If init_mean is None, then the
    uniform_unit_scaling_initialzer will be used.
  """
  with vs.variable_scope('linear_regression'):
    scope_name = vs.get_variable_scope().name
    logging_ops.histogram_summary('%s.x' % scope_name, x)
    logging_ops.histogram_summary('%s.y' % scope_name, y)
    dtype = x.dtype.base_dtype
    y_shape = y.get_shape()
    if len(y_shape) == 1:
      output_shape = 1
    else:
      output_shape = y_shape[1]
    # Set up the requested initialization.
    if init_mean is None:
      weights = vs.get_variable(
          'weights', [x.get_shape()[1], output_shape], dtype=dtype)
      bias = vs.get_variable('bias', [output_shape], dtype=dtype)
    else:
      weights = vs.get_variable('weights', [x.get_shape()[1], output_shape],
                                initializer=init_ops.random_normal_initializer(
                                    init_mean, init_stddev, dtype=dtype),
                                dtype=dtype)
      bias = vs.get_variable('bias', [output_shape],
                             initializer=init_ops.random_normal_initializer(
                                 init_mean, init_stddev, dtype=dtype),
                             dtype=dtype)
    logging_ops.histogram_summary('%s.weights' % scope_name, weights)
    logging_ops.histogram_summary('%s.bias' % scope_name, bias)
    return losses_ops.mean_squared_error_regressor(x, y, weights, bias)
项目:lsdc    作者:febert    | 项目源码 | 文件源码
def linear_regression(x, y, init_mean=None, init_stddev=1.0):
  """Creates linear regression TensorFlow subgraph.

  Args:
    x: tensor or placeholder for input features.
    y: tensor or placeholder for labels.
    init_mean: the mean value to use for initialization.
    init_stddev: the standard devation to use for initialization.

  Returns:
    Predictions and loss tensors.

  Side effects:
    The variables linear_regression.weights and linear_regression.bias are
    initialized as follows.  If init_mean is not None, then initialization
    will be done using a random normal initializer with the given init_mean
    and init_stddv.  (These may be set to 0.0 each if a zero initialization
    is desirable for convex use cases.)  If init_mean is None, then the
    uniform_unit_scaling_initialzer will be used.
  """
  with vs.variable_scope('linear_regression'):
    scope_name = vs.get_variable_scope().name
    summary.histogram('%s.x' % scope_name, x)
    summary.histogram('%s.y' % scope_name, y)
    dtype = x.dtype.base_dtype
    y_shape = y.get_shape()
    if len(y_shape) == 1:
      output_shape = 1
    else:
      output_shape = y_shape[1]
    # Set up the requested initialization.
    if init_mean is None:
      weights = vs.get_variable(
          'weights', [x.get_shape()[1], output_shape], dtype=dtype)
      bias = vs.get_variable('bias', [output_shape], dtype=dtype)
    else:
      weights = vs.get_variable('weights', [x.get_shape()[1], output_shape],
                                initializer=init_ops.random_normal_initializer(
                                    init_mean, init_stddev, dtype=dtype),
                                dtype=dtype)
      bias = vs.get_variable('bias', [output_shape],
                             initializer=init_ops.random_normal_initializer(
                                 init_mean, init_stddev, dtype=dtype),
                             dtype=dtype)
    summary.histogram('%s.weights' % scope_name, weights)
    summary.histogram('%s.bias' % scope_name, bias)
    return losses_ops.mean_squared_error_regressor(x, y, weights, bias)
项目:DeepLearning_VirtualReality_BigData_Project    作者:rashmitripathi    | 项目源码 | 文件源码
def linear_regression(x, y, init_mean=None, init_stddev=1.0):
  """Creates linear regression TensorFlow subgraph.

  Args:
    x: tensor or placeholder for input features.
    y: tensor or placeholder for labels.
    init_mean: the mean value to use for initialization.
    init_stddev: the standard devation to use for initialization.

  Returns:
    Predictions and loss tensors.

  Side effects:
    The variables linear_regression.weights and linear_regression.bias are
    initialized as follows.  If init_mean is not None, then initialization
    will be done using a random normal initializer with the given init_mean
    and init_stddv.  (These may be set to 0.0 each if a zero initialization
    is desirable for convex use cases.)  If init_mean is None, then the
    uniform_unit_scaling_initialzer will be used.
  """
  with vs.variable_scope('linear_regression'):
    scope_name = vs.get_variable_scope().name
    summary.histogram('%s.x' % scope_name, x)
    summary.histogram('%s.y' % scope_name, y)
    dtype = x.dtype.base_dtype
    y_shape = y.get_shape()
    if len(y_shape) == 1:
      output_shape = 1
    else:
      output_shape = y_shape[1]
    # Set up the requested initialization.
    if init_mean is None:
      weights = vs.get_variable(
          'weights', [x.get_shape()[1], output_shape], dtype=dtype)
      bias = vs.get_variable('bias', [output_shape], dtype=dtype)
    else:
      weights = vs.get_variable(
          'weights', [x.get_shape()[1], output_shape],
          initializer=init_ops.random_normal_initializer(
              init_mean, init_stddev, dtype=dtype),
          dtype=dtype)
      bias = vs.get_variable(
          'bias', [output_shape],
          initializer=init_ops.random_normal_initializer(
              init_mean, init_stddev, dtype=dtype),
          dtype=dtype)
    summary.histogram('%s.weights' % scope_name, weights)
    summary.histogram('%s.bias' % scope_name, bias)
    return losses_ops.mean_squared_error_regressor(x, y, weights, bias)