我们从Python开源项目中,提取了以下6个代码示例,用于说明如何使用tensorflow.python.ops.math_ops.reduce_min()。
def min(x, axis=None, keepdims=False): """Minimum value in a tensor. Arguments: x: A tensor or variable. axis: An integer, the axis to find minimum values. keepdims: A boolean, whether to keep the dimensions or not. If `keepdims` is `False`, the rank of the tensor is reduced by 1. If `keepdims` is `True`, the reduced dimension is retained with length 1. Returns: A tensor with miminum values of `x`. """ axis = _normalize_axis(axis, ndim(x)) return math_ops.reduce_min(x, reduction_indices=axis, keep_dims=keepdims)
def test_name(self): result_lt = ops.reduce_min(self.original_lt, {'channel'}) self.assertIn('lt_reduce_min', result_lt.name)
def test(self): result_lt = ops.reduce_min(self.original_lt, {'channel'}) golden_lt = core.LabeledTensor( math_ops.reduce_min(self.original_lt.tensor, 1), [self.a0, self.a2, self.a3]) self.assertLabeledTensorsEqual(result_lt, golden_lt)
def testReduceMin(self): def reference_min(inp, axis): """Wrapper around np.amin that returns +infinity for an empty input.""" if inp.shape[axis] == 0: return np.full(inp.shape[0:axis] + inp.shape[axis + 1:], float('inf')) return np.amin(inp, axis) self._testReduction(math_ops.reduce_min, reference_min, np.float32, self.FLOAT_DATA)
def seq_labeling_decoder_linear(decoder_inputs, num_decoder_symbols, scope=None, sequence_length=None, dtype=tf.float32): with tf.variable_scope(scope or "non-attention_RNN"): decoder_outputs = list() # copy over logits once out of sequence_length if decoder_inputs[0].get_shape().ndims != 1: (fixed_batch_size, output_size) = decoder_inputs[0].get_shape().with_rank(2) else: fixed_batch_size = decoder_inputs[0].get_shape().with_rank_at_least(1)[0] if fixed_batch_size.value: batch_size = fixed_batch_size.value else: batch_size = tf.shape(decoder_inputs[0])[0] if sequence_length is not None: sequence_length = math_ops.to_int32(sequence_length) if sequence_length is not None: # Prepare variables zero_logit = tf.zeros( tf.stack([batch_size, num_decoder_symbols]), decoder_inputs[0].dtype) zero_logit.set_shape( tensor_shape.TensorShape([fixed_batch_size.value, num_decoder_symbols])) min_sequence_length = math_ops.reduce_min(sequence_length) max_sequence_length = math_ops.reduce_max(sequence_length) for time, input_ in enumerate(decoder_inputs): # if time == 0: # hidden_state = zero_state(num_decoder_symbols, batch_size) if time > 0: tf.get_variable_scope().reuse_variables() # pylint: disable=cell-var-from-loop # call_cell = lambda: cell(input_, state) generate_logit = lambda: _linear(decoder_inputs[time], num_decoder_symbols, True) # pylint: enable=cell-var-from-loop if sequence_length is not None: logit = _step( time, sequence_length, min_sequence_length, max_sequence_length, zero_logit, generate_logit) else: logit = generate_logit decoder_outputs.append(logit) return decoder_outputs
def generate_sequence_output(encoder_outputs, encoder_state, num_decoder_symbols, sequence_length, num_heads=1, dtype=dtypes.float32, use_attention=True, loop_function=None, scope=None, DNN_at_output=False, forward_only=False): with variable_scope.variable_scope(scope or "non-attention_RNN"): attention_encoder_outputs = list() sequence_attention_weights = list() # copy over logits once out of sequence_length if encoder_outputs[0].get_shape().ndims != 1: (fixed_batch_size, output_size) = encoder_outputs[0].get_shape().with_rank(2) else: fixed_batch_size = encoder_outputs[0].get_shape().with_rank_at_least(1)[0] if fixed_batch_size.value: batch_size = fixed_batch_size.value else: batch_size = array_ops.shape(encoder_outputs[0])[0] if sequence_length is not None: sequence_length = math_ops.to_int32(sequence_length) if sequence_length is not None: # Prepare variables zero_logit = array_ops.zeros( array_ops.pack([batch_size, num_decoder_symbols]), encoder_outputs[0].dtype) zero_logit.set_shape( tensor_shape.TensorShape([fixed_batch_size.value, num_decoder_symbols])) min_sequence_length = math_ops.reduce_min(sequence_length) max_sequence_length = math_ops.reduce_max(sequence_length) for time, input_ in enumerate(encoder_outputs): if time > 0: variable_scope.get_variable_scope().reuse_variables() if not DNN_at_output: generate_logit = lambda: linear_transformation(encoder_outputs[time], output_size, num_decoder_symbols) else: generate_logit = lambda: multilayer_perceptron(encoder_outputs[time], output_size, 200, num_decoder_symbols, forward_only=forward_only) # pylint: enable=cell-var-from-loop if sequence_length is not None: logit = _step( time, sequence_length, min_sequence_length, max_sequence_length, zero_logit, generate_logit) else: logit = generate_logit attention_encoder_outputs.append(logit) if DNN_at_output: regularizers = get_multilayer_perceptron_regularizers() else: regularizers = get_linear_transformation_regularizers() return attention_encoder_outputs, sequence_attention_weights, regularizers