我们从Python开源项目中,提取了以下13个代码示例,用于说明如何使用tensorflow.python.ops.math_ops.mod()。
def adjust_hue(image, delta, name=None): with ops.op_scope([image], name, 'adjust_hue') as name: # Remember original dtype to so we can convert back if needed orig_dtype = image.dtype flt_image = tf.image.convert_image_dtype(image, tf.float32) hsv = gen_image_ops.rgb_to_hsv(flt_image) hue = tf.slice(hsv, [0, 0, 0, 0], [-1, -1, -1, 1]) saturation = tf.slice(hsv, [0, 0, 0, 1], [-1, -1, -1, 1]) value = tf.slice(hsv, [0, 0, 0, 2], [-1, -1, -1, 1]) # Note that we add 2*pi to guarantee that the resulting hue is a positive # floating point number since delta is [-0.5, 0.5]. hue = math_ops.mod(hue + (delta + 1.), 1.) hsv_altered = tf.concat(3, [hue, saturation, value]) rgb_altered = gen_image_ops.hsv_to_rgb(hsv_altered) return tf.image.convert_image_dtype(rgb_altered, orig_dtype)
def _shard_indices(self, keys): if self._key_dtype == dtypes.string: indices = string_ops.string_to_hash_bucket_fast(keys, self._num_shards) else: indices = math_ops.mod(keys, self._num_shards) return math_ops.cast(indices, dtypes.int32)
def insert_transformed_feature(self, columns_to_tensors): """Handles sparse column to id conversion.""" sparse_id_values = math_ops.mod(columns_to_tensors[self.name].values, self.bucket_size, name="mod") columns_to_tensors[self] = ops.SparseTensor( columns_to_tensors[self.name].indices, sparse_id_values, columns_to_tensors[self.name].shape)
def _shard_indices(self, keys): key_shape = keys.get_shape() if key_shape.ndims > 1: # If keys are a matrix (i.e. a single key is a vector), we use the first # element of each key vector to determine the shard. keys = array_ops.slice(keys, [0, 0], [key_shape[0].value, 1]) keys = array_ops.reshape(keys, [-1]) indices = math_ops.mod(math_ops.abs(keys), self._num_shards) return math_ops.cast(indices, dtypes.int32)
def insert_transformed_feature(self, columns_to_tensors): """Handles sparse column to id conversion.""" input_tensor = self._get_input_sparse_tensor(columns_to_tensors) sparse_id_values = math_ops.mod(input_tensor.values, self.bucket_size, name="mod") columns_to_tensors[self] = sparse_tensor_py.SparseTensor( input_tensor.indices, sparse_id_values, input_tensor.shape)
def __mod__(self, other): return mod(self, other)
def testFloat(self): x = [0.5, 0.7, 0.3] for dtype in [np.float32, np.double]: # Test scalar and vector versions. for denom in [x[0], [x[0]] * 3]: x_np = np.array(x, dtype=dtype) with self.test_session(): x_tf = constant_op.constant(x_np, shape=x_np.shape) y_tf = math_ops.mod(x_tf, denom) y_tf_np = y_tf.eval() y_np = np.fmod(x_np, denom) self.assertAllClose(y_tf_np, y_np, atol=1e-2)
def testFixed(self): x = [5, 10, 23] for dtype in [np.int32, np.int64]: # Test scalar and vector versions. for denom in [x[0], x]: x_np = np.array(x, dtype=dtype) with self.test_session(): x_tf = constant_op.constant(x_np, shape=x_np.shape) y_tf = math_ops.mod(x_tf, denom) y_tf_np = y_tf.eval() y_np = np.mod(x_np, denom) self.assertAllClose(y_tf_np, y_np)
def insert_transformed_feature(self, columns_to_tensors): """Handles sparse column to id conversion.""" input_tensor = self._get_input_sparse_tensor(columns_to_tensors) sparse_id_values = math_ops.mod(input_tensor.values, self.bucket_size, name="mod") columns_to_tensors[self] = sparse_tensor_py.SparseTensor( input_tensor.indices, sparse_id_values, input_tensor.dense_shape)
def setUp(self): super(CoreBinaryOpsTest, self).setUp() self.x_probs_broadcast_tensor = array_ops.reshape( self.x_probs_lt.tensor, [self.x_size, 1, self.probs_size]) self.channel_probs_broadcast_tensor = array_ops.reshape( self.channel_probs_lt.tensor, [1, self.channel_size, self.probs_size]) # == and != are not element-wise for tf.Tensor, so they shouldn't be # elementwise for LabeledTensor, either. self.ops = [ ('add', operator.add, math_ops.add, core.add), ('sub', operator.sub, math_ops.subtract, core.sub), ('mul', operator.mul, math_ops.multiply, core.mul), ('div', operator.truediv, math_ops.div, core.div), ('mod', operator.mod, math_ops.mod, core.mod), ('pow', operator.pow, math_ops.pow, core.pow_function), ('equal', None, math_ops.equal, core.equal), ('less', operator.lt, math_ops.less, core.less), ('less_equal', operator.le, math_ops.less_equal, core.less_equal), ('not_equal', None, math_ops.not_equal, core.not_equal), ('greater', operator.gt, math_ops.greater, core.greater), ('greater_equal', operator.ge, math_ops.greater_equal, core.greater_equal), ] self.test_lt_1 = self.x_probs_lt self.test_lt_2 = self.channel_probs_lt self.test_lt_1_broadcast = self.x_probs_broadcast_tensor self.test_lt_2_broadcast = self.channel_probs_broadcast_tensor self.broadcast_axes = [self.a0, self.a1, self.a3]
def __rmod__(self, other): return mod(other, self)