我们从Python开源项目中,提取了以下23个代码示例,用于说明如何使用tensorflow.python.platform.gfile.DeleteRecursively()。
def garbage_collect_exports(export_dir_base, exports_to_keep): """Deletes older exports, retaining only a given number of the most recent. Export subdirectories are assumed to be named with monotonically increasing integers; the most recent are taken to be those with the largest values. Args: export_dir_base: the base directory under which each export is in a versioned subdirectory. exports_to_keep: the number of recent exports to retain. """ if exports_to_keep is None: return keep_filter = gc.largest_export_versions(exports_to_keep) delete_filter = gc.negation(keep_filter) for p in delete_filter(gc.get_paths(export_dir_base, parser=_export_version_parser)): gfile.DeleteRecursively(p.path)
def tearDownModule(): gfile.DeleteRecursively(tf.test.get_temp_dir())
def main(argv=None): # pylint: disable=unused-argument cifar10.maybe_download_and_extract() if gfile.Exists(FLAGS.train_dir): gfile.DeleteRecursively(FLAGS.train_dir) gfile.MakeDirs(FLAGS.train_dir) train()
def main(argv=None): # pylint: disable=unused-argument cifar10.maybe_download_and_extract() if gfile.Exists(FLAGS.train_dir): gfile.DeleteRecursively(FLAGS.train_dir) else: gfile.MakeDirs(FLAGS.train_dir) train()
def main(argv=None): # pylint: disable=unused-argument cifar10.maybe_download_and_extract() if gfile.Exists(FLAGS.eval_dir): gfile.DeleteRecursively(FLAGS.eval_dir) gfile.MakeDirs(FLAGS.eval_dir) evaluate()
def main(argv=None): # pylint: disable=unused-argument setConfig() config = network_config.getConfig() train_dir = config['train_dir'] cifar10.maybe_download_and_extract() if gfile.Exists(train_dir): gfile.DeleteRecursively(train_dir) gfile.MakeDirs(train_dir) train()
def main(argv=None): # pylint: disable=unused-argument # Have to set config first # TODO: remove the need for this, will check how Python initialize a module setConfig() cifar10.maybe_download_and_extract() config = network_config.getConfig() train_dir = config['train_dir'] if gfile.Exists(train_dir): gfile.DeleteRecursively(train_dir) gfile.MakeDirs(train_dir) train()
def main(argv=None): # pylint: disable=unused-argument if not gfile.Exists(FLAGS.checkpoint_dir): # gfile.DeleteRecursively(FLAGS.checkpoint_dir) gfile.MakeDirs(FLAGS.checkpoint_dir) model_file = os.path.join('models', FLAGS.model + '.py') assert gfile.Exists(model_file), 'no model file named: ' + model_file gfile.Copy(model_file, FLAGS.checkpoint_dir + '/model.py') m = importlib.import_module('.' + FLAGS.model, 'models') data = get_data_provider(FLAGS.dataset, training=True) train(m.model, data, batch_size=FLAGS.batch_size, checkpoint_dir=FLAGS.checkpoint_dir, log_dir=FLAGS.log_dir, num_epochs=FLAGS.num_epochs)
def testLoadExistingVariables(self): model_dir = tempfile.mkdtemp(prefix=os.path.join(self.get_temp_dir(), 'load_existing_variables')) if gfile.Exists(model_dir): gfile.DeleteRecursively(model_dir) init_value0 = 10.0 init_value1 = 20.0 var_names_to_values = {'v0': init_value0, 'v1': init_value1} with self.test_session() as sess: model_path = self.create_checkpoint_from_values(var_names_to_values, model_dir) var0 = variables_lib2.variable('my_var0', shape=[]) var1 = variables_lib2.variable('my_var1', shape=[]) vars_to_restore = {'v0': var0, 'v1': var1} init_fn = variables_lib2.assign_from_checkpoint_fn(model_path, vars_to_restore) # Initialize the variables. sess.run(variables_lib.global_variables_initializer()) # Perform the assignment. init_fn(sess) # Request and test the variable values: self.assertEqual(init_value0, var0.eval()) self.assertEqual(init_value1, var1.eval())
def testLoadExistingVariablesDifferentShapeDefaultDoesNotAllowReshape(self): model_dir = tempfile.mkdtemp(prefix=os.path.join( self.get_temp_dir(), 'load_existing_vars_no_reshape')) if gfile.Exists(model_dir): gfile.DeleteRecursively(model_dir) init_value0 = [[10.0, 11.0]] init_value1 = 20.0 var_names_to_values = {'v0': init_value0, 'v1': init_value1} with self.test_session() as sess: model_path = self.create_checkpoint_from_values(var_names_to_values, model_dir) var0 = variables_lib2.variable('my_var0', shape=[2, 1]) var1 = variables_lib2.variable('my_var1', shape=[]) vars_to_restore = {'v0': var0, 'v1': var1} init_fn = variables_lib2.assign_from_checkpoint_fn(model_path, vars_to_restore) # Initialize the variables. sess.run(variables_lib.global_variables_initializer()) # Perform the assignment. with self.assertRaises(errors_impl.InvalidArgumentError): init_fn(sess)
def testLoadExistingVariablesDifferentShapeAllowReshape(self): model_dir = tempfile.mkdtemp(prefix=os.path.join( self.get_temp_dir(), 'load_existing_variables_different_shape_allow_reshape')) if gfile.Exists(model_dir): gfile.DeleteRecursively(model_dir) init_value0 = [[10.0, 11.0]] init_value1 = 20.0 var_names_to_values = {'v0': init_value0, 'v1': init_value1} with self.test_session() as sess: model_path = self.create_checkpoint_from_values(var_names_to_values, model_dir) var0 = variables_lib2.variable('my_var0', shape=[2, 1]) var1 = variables_lib2.variable('my_var1', shape=[]) vars_to_restore = {'v0': var0, 'v1': var1} init_fn = variables_lib2.assign_from_checkpoint_fn( model_path, vars_to_restore, reshape_variables=True) # Initialize the variables. sess.run(variables_lib.global_variables_initializer()) # Perform the assignment. init_fn(sess) # Request and test the variable values: self.assertAllEqual(np.transpose(np.array(init_value0)), var0.eval()) self.assertEqual(init_value1, var1.eval())
def testNotFoundError(self): model_dir = tempfile.mkdtemp(prefix=os.path.join(self.get_temp_dir(), 'not_found_error')) if gfile.Exists(model_dir): gfile.DeleteRecursively(model_dir) init_value0 = 10.0 init_value1 = 20.0 var_names_to_values = {'v0': init_value0, 'v1': init_value1} with self.test_session() as sess: model_path = self.create_checkpoint_from_values(var_names_to_values, model_dir) var0 = variables_lib2.variable('my_var0', shape=[]) var1 = variables_lib2.variable('my_var1', shape=[]) var2 = variables_lib2.variable('my_var2', shape=[]) vars_to_restore = {'v0': var0, 'v1': var1, 'v2': var2} init_fn = variables_lib2.assign_from_checkpoint_fn(model_path, vars_to_restore) # Initialize the variables. sess.run(variables_lib.global_variables_initializer()) # Perform the assignment. with self.assertRaises(errors_impl.NotFoundError): init_fn(sess)
def testMissingVariablesList(self): model_dir = tempfile.mkdtemp(prefix=os.path.join(self.get_temp_dir(), 'missing_variables_list')) if gfile.Exists(model_dir): gfile.DeleteRecursively(model_dir) init_value0 = 10.0 init_value1 = 20.0 var_names_to_values = {'v0': init_value0, 'v1': init_value1} with self.test_session() as sess: model_path = self.create_checkpoint_from_values(var_names_to_values, model_dir) var0 = variables_lib2.variable('v0', shape=[]) var1 = variables_lib2.variable('v1', shape=[]) var2 = variables_lib2.variable('v2', shape=[]) vars_to_restore = [var0, var1, var2] init_fn = variables_lib2.assign_from_checkpoint_fn( model_path, vars_to_restore, ignore_missing_vars=True) # Initialize the variables. sess.run(variables_lib.global_variables_initializer()) # Perform the assignment. init_fn(sess) # Request and test the variable values: self.assertEqual(init_value0, var0.eval()) self.assertEqual(init_value1, var1.eval())
def tearDownModule(): gfile.DeleteRecursively(test.get_temp_dir())