Python tensorflow 模块,placeholder() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用tensorflow.placeholder()

项目:seq2seq    作者:google    | 项目源码 | 文件源码
def _test_metric_spec(self, metric_spec, hyps, refs, expected_scores):
    """Tests a MetricSpec"""
    predictions = {"predicted_tokens": tf.placeholder(dtype=tf.string)}
    labels = {"target_tokens": tf.placeholder(dtype=tf.string)}

    value, update_op = metric_spec.create_metric_ops(None, labels, predictions)

    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      sess.run(tf.local_variables_initializer())

      scores = []
      for hyp, ref in zip(hyps, refs):
        hyp = hyp.split(" ")
        ref = ref.split(" ")
        sess.run(update_op, {
            predictions["predicted_tokens"]: [hyp],
            labels["target_tokens"]: [ref]
        })
        scores.append(sess.run(value))

      for score, expected in zip(scores, expected_scores):
        np.testing.assert_almost_equal(score, expected, decimal=2)
        np.testing.assert_almost_equal(score, expected, decimal=2)
项目:deep-summarization    作者:harpribot    | 项目源码 | 文件源码
def _load_data_graph(self):
        """
        Loads the data graph consisting of the encoder and decoder input placeholders, Label (Target tip summary)
        placeholders and the weights of the hidden layer of the Seq2Seq model.

        :return: None
        """
        # input
        with tf.variable_scope("train_test", reuse=True):
            # review input - Both original and reversed
            self.enc_inp_fwd = [tf.placeholder(tf.int32, shape=(None,), name="input%i" % t)
                                for t in range(self.seq_length)]
            self.enc_inp_bwd = [tf.placeholder(tf.int32, shape=(None,), name="input%i" % t)
                                for t in range(self.seq_length)]
            # desired output
            self.labels = [tf.placeholder(tf.int32, shape=(None,), name="labels%i" % t)
                           for t in range(self.seq_length)]
            # weight of the hidden layer
            self.weights = [tf.ones_like(labels_t, dtype=tf.float32)
                            for labels_t in self.labels]

            # Decoder input: prepend some "GO" token and drop the final
            # token of the encoder input
            self.dec_inp = ([tf.zeros_like(self.labels[0], dtype=np.int32, name="GO")] + self.labels[:-1])
项目:deep-summarization    作者:harpribot    | 项目源码 | 文件源码
def _load_data_graph(self):
        """
        Loads the data graph consisting of the encoder and decoder input placeholders, Label (Target tip summary)
        placeholders and the weights of the hidden layer of the Seq2Seq model.

        :return: None
        """
        # input
        with tf.variable_scope("train_test", reuse=True):
            self.enc_inp = [tf.placeholder(tf.int32, shape=(None,),
                                           name="input%i" % t)
                            for t in range(self.seq_length)]
            # desired output
            self.labels = [tf.placeholder(tf.int32, shape=(None,),
                                          name="labels%i" % t)
                           for t in range(self.seq_length)]
            # weight of the hidden layer
            self.weights = [tf.ones_like(labels_t, dtype=tf.float32)
                            for labels_t in self.labels]

            # Decoder input: prepend some "GO" token and drop the final
            # token of the encoder input
            self.dec_inp = ([tf.zeros_like(self.labels[0], dtype=np.int32, name="GO")]
                            + self.labels[:-1])
项目:deep-summarization    作者:harpribot    | 项目源码 | 文件源码
def _load_data_graph(self):
        """
        Loads the data graph consisting of the encoder and decoder input placeholders, Label (Target tip summary)
        placeholders and the weights of the hidden layer of the Seq2Seq model.

        :return: None
        """
        # input
        with tf.variable_scope("train_test", reuse=True):
            self.enc_inp = [tf.placeholder(tf.int32, shape=(None,), name="input%i" % t)
                            for t in range(self.seq_length)]
            # desired output
            self.labels = [tf.placeholder(tf.int32, shape=(None,), name="labels%i" % t)
                           for t in range(self.seq_length)]
            # weight of the hidden layer
            self.weights = [tf.ones_like(labels_t, dtype=tf.float32)
                            for labels_t in self.labels]

            # Decoder input: prepend some "GO" token and drop the final
            # token of the encoder input
            self.dec_inp = ([tf.zeros_like(self.labels[0], dtype=np.int32, name="GO")] + self.labels[:-1])
项目:deep-summarization    作者:harpribot    | 项目源码 | 文件源码
def _load_data_graph(self):
        """
        Loads the data graph consisting of the encoder and decoder input placeholders, Label (Target tip summary)
        placeholders and the weights of the hidden layer of the Seq2Seq model.

        :return: None
        """
        # input
        with tf.variable_scope("train_test", reuse=True):
            # review input - Both original and reversed
            self.enc_inp_fwd = [tf.placeholder(tf.int32, shape=(None,), name="input%i" % t)
                                for t in range(self.seq_length)]
            self.enc_inp_bwd = [tf.placeholder(tf.int32, shape=(None,), name="input%i" % t)
                                for t in range(self.seq_length)]
            # desired output
            self.labels = [tf.placeholder(tf.int32, shape=(None,), name="labels%i" % t)
                           for t in range(self.seq_length)]
            # weight of the hidden layer
            self.weights = [tf.ones_like(labels_t, dtype=tf.float32)
                            for labels_t in self.labels]

            # Decoder input: prepend some "GO" token and drop the final
            # token of the encoder input
            self.dec_inp = ([tf.zeros_like(self.labels[0], dtype=np.int32, name="GO")] + self.labels[:-1])
项目:variational-text-tensorflow    作者:carpedm20    | 项目源码 | 文件源码
def build_model(self):
    self.q = tf.placeholder(tf.float32, [self.reader.vocab_size], name="question")
    self.a = tf.placeholder(tf.float32, [self.reader.vocab_size], name="answer")

    self.build_encoder()
    self.build_decoder()

    # Kullback Leibler divergence
    self.e_loss = -0.5 * tf.reduce_sum(1 + self.log_sigma_sq - tf.square(self.mu) - tf.exp(self.log_sigma_sq))

    # Log likelihood
    self.g_loss = tf.reduce_sum(tf.log(self.p_x_i))

    self.loss = tf.reduce_mean(self.e_loss + self.g_loss)
    self.optim = tf.train.AdamOptimizer(learning_rate=self.learning_rate).minimize(-self.loss)

    _ = tf.scalar_summary("encoder loss", self.e_loss)
    _ = tf.scalar_summary("decoder loss", self.g_loss)
    _ = tf.scalar_summary("loss", self.loss)
项目:AVSR-Deep-Speech    作者:pandeydivesh15    | 项目源码 | 文件源码
def __init__(self, files_list, thread_count, batch_size, numcep, numcontext, next_index=lambda x: x + 1):
        self._coord = None
        self._numcep = numcep
        self._x = tf.placeholder(tf.float32, [None, numcep + (2 * numcep * numcontext)])
        self._x_length = tf.placeholder(tf.int32, [])
        self._y = tf.placeholder(tf.int32, [None,])
        self._y_length = tf.placeholder(tf.int32, [])
        self.example_queue = tf.PaddingFIFOQueue(shapes=[[None, numcep + (2 * numcep * numcontext)], [], [None,], []],
                                                  dtypes=[tf.float32, tf.int32, tf.int32, tf.int32],
                                                  capacity=2 * self._get_device_count() * batch_size)
        self._enqueue_op = self.example_queue.enqueue([self._x, self._x_length, self._y, self._y_length])
        self._close_op = self.example_queue.close(cancel_pending_enqueues=True)
        self.batch_size = batch_size
        self._numcontext = numcontext
        self._thread_count = thread_count
        self._files_list = self._create_files_list(files_list)
        self._next_index = next_index
项目:AVSR-Deep-Speech    作者:pandeydivesh15    | 项目源码 | 文件源码
def __init__(self, files_list, thread_count, batch_size, numcep, numcontext, next_index=lambda x: x + 1):
        self._coord = None
        self._numcep = numcep
        self._x = tf.placeholder(tf.float32, [None, numcep + (2 * numcep * numcontext)])
        self._x_length = tf.placeholder(tf.int32, [])
        self._y = tf.placeholder(tf.int32, [None,])
        self._y_length = tf.placeholder(tf.int32, [])
        self.example_queue = tf.PaddingFIFOQueue(shapes=[[None, numcep + (2 * numcep * numcontext)], [], [None,], []],
                                                  dtypes=[tf.float32, tf.int32, tf.int32, tf.int32],
                                                  capacity=2 * self._get_device_count() * batch_size)
        self._enqueue_op = self.example_queue.enqueue([self._x, self._x_length, self._y, self._y_length])
        self._close_op = self.example_queue.close(cancel_pending_enqueues=True)
        self.batch_size = batch_size
        self._numcontext = numcontext
        self._thread_count = thread_count
        self._files_list = self._create_files_list(files_list)
        self._next_index = next_index
项目:AVSR-Deep-Speech    作者:pandeydivesh15    | 项目源码 | 文件源码
def __init__(self, files_list, thread_count, batch_size, numcep, numcontext, next_index=lambda x: x + 1):
        self._coord = None
        self._numcep = numcep
        self._x = tf.placeholder(tf.float32, [None, numcep + (2 * numcep * numcontext)])
        self._x_length = tf.placeholder(tf.int32, [])
        self._y = tf.placeholder(tf.int32, [None,])
        self._y_length = tf.placeholder(tf.int32, [])
        self.example_queue = tf.PaddingFIFOQueue(shapes=[[None, numcep + (2 * numcep * numcontext)], [], [None,], []],
                                                  dtypes=[tf.float32, tf.int32, tf.int32, tf.int32],
                                                  capacity=2 * self._get_device_count() * batch_size)
        self._enqueue_op = self.example_queue.enqueue([self._x, self._x_length, self._y, self._y_length])
        self._close_op = self.example_queue.close(cancel_pending_enqueues=True)
        self.batch_size = batch_size
        self._numcontext = numcontext
        self._thread_count = thread_count
        self._files_list = self._create_files_list(files_list)
        self._next_index = next_index
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def get_video_weights(video_id_batch):
  video_id_to_index = tf.contrib.lookup.string_to_index_table_from_file(
                          vocabulary_file=FLAGS.sample_vocab_file, default_value=0)
  indexes = video_id_to_index.lookup(video_id_batch)
  weights, length = get_video_weights_array()
  weights_input = tf.placeholder(tf.float32, shape=[length], name="sample_weights_input")
  weights_tensor = tf.get_variable("sample_weights",
                               shape=[length],
                               trainable=False,
                               dtype=tf.float32,
                               initializer=tf.constant_initializer(weights))
  weights_assignment = tf.assign(weights_tensor, weights_input)

  tf.add_to_collection("weights_input", weights_input)
  tf.add_to_collection("weights_assignment", weights_assignment)

  video_weight_batch = tf.nn.embedding_lookup(weights_tensor, indexes)
  return video_weight_batch
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def get_video_weights(video_id_batch):
  video_id_to_index = tf.contrib.lookup.string_to_index_table_from_file(
                          vocabulary_file=FLAGS.sample_vocab_file, default_value=0)
  indexes = video_id_to_index.lookup(video_id_batch)
  weights, length = get_video_weights_array()
  weights_input = tf.placeholder(tf.float32, shape=[length], name="sample_weights_input")
  weights_tensor = tf.get_variable("sample_weights",
                               shape=[length],
                               trainable=False,
                               dtype=tf.float32,
                               initializer=tf.constant_initializer(weights))
  weights_assignment = tf.assign(weights_tensor, weights_input)

  tf.add_to_collection("weights_input", weights_input)
  tf.add_to_collection("weights_assignment", weights_assignment)

  video_weight_batch = tf.nn.embedding_lookup(weights_tensor, indexes)
  return video_weight_batch
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def get_video_weights(video_id_batch):
  video_id_to_index = tf.contrib.lookup.string_to_index_table_from_file(
                          vocabulary_file=FLAGS.sample_vocab_file, default_value=0)
  indexes = video_id_to_index.lookup(video_id_batch)
  weights, length = get_video_weights_array()
  weights_input = tf.placeholder(tf.float32, shape=[length], name="sample_weights_input")
  weights_tensor = tf.get_variable("sample_weights",
                               shape=[length],
                               trainable=False,
                               dtype=tf.float32,
                               initializer=tf.constant_initializer(weights))
  weights_assignment = tf.assign(weights_tensor, weights_input)

  tf.add_to_collection("weights_input", weights_input)
  tf.add_to_collection("weights_assignment", weights_assignment)

  video_weight_batch = tf.nn.embedding_lookup(weights_tensor, indexes)
  return video_weight_batch
项目:youtube-8m    作者:wangheda    | 项目源码 | 文件源码
def get_video_weights(video_id_batch):
  video_id_to_index = tf.contrib.lookup.string_to_index_table_from_file(
                          vocabulary_file=FLAGS.sample_vocab_file, default_value=0)
  indexes = video_id_to_index.lookup(video_id_batch)
  weights, length = get_video_weights_array()
  weights_input = tf.placeholder(tf.float32, shape=[length], name="sample_weights_input")
  weights_tensor = tf.get_variable("sample_weights",
                               shape=[length],
                               trainable=False,
                               dtype=tf.float32,
                               initializer=tf.constant_initializer(weights))
  weights_assignment = tf.assign(weights_tensor, weights_input)

  tf.add_to_collection("weights_input", weights_input)
  tf.add_to_collection("weights_assignment", weights_assignment)

  video_weight_batch = tf.nn.embedding_lookup(weights_tensor, indexes)
  return video_weight_batch
项目:human-rl    作者:gsastry    | 项目源码 | 文件源码
def __init__(self, ob_space, ac_space, layers=[256], **kwargs):
        self.x = x = tf.placeholder(tf.float32, [None] + list(ob_space))

        rank = len(ob_space)

        if rank == 3: # pixel input
            for i in range(4):
                x = tf.nn.elu(conv2d(x, 32, "c{}".format(i + 1), [3, 3], [2, 2]))
        elif rank == 1: # plain features
            #x = tf.nn.elu(linear(x, 256, "l1", normalized_columns_initializer(0.01)))
            pass
        else:
            raise TypeError("observation space must have rank 1 or 3, got %d" % rank)

        x = flatten(x)

        for i, layer in enumerate(layers):
            x = tf.nn.elu(linear(x, layer, "l{}".format(i + 1), tf.contrib.layers.xavier_initializer()))

        self.logits = linear(x, ac_space, "action", tf.contrib.layers.xavier_initializer())
        self.vf = tf.reshape(linear(x, 1, "value", tf.contrib.layers.xavier_initializer()), [-1])
        self.sample = categorical_sample(self.logits, ac_space)[0, :]
        self.var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, tf.get_variable_scope().name)
        self.state_in = []
项目:human-rl    作者:gsastry    | 项目源码 | 文件源码
def __init__(self, ob_space, ac_space, layers=[256], **kwargs):
        self.x = x = tf.placeholder(tf.float32, [None] + list(ob_space))

        rank = len(ob_space)

        if rank == 3: # pixel input
            for i in range(4):
                x = tf.nn.elu(conv2d(x, 32, "c{}".format(i + 1), [3, 3], [2, 2]))
        elif rank == 1: # plain features
            #x = tf.nn.elu(linear(x, 256, "l1", normalized_columns_initializer(0.01)))
            pass
        else:
            raise TypeError("observation space must have rank 1 or 3, got %d" % rank)

        x = flatten(x)

        for i, layer in enumerate(layers):
            x = tf.nn.elu(linear(x, layer, "l{}".format(i + 1), tf.contrib.layers.xavier_initializer()))

        self.logits = linear(x, ac_space, "action", tf.contrib.layers.xavier_initializer())
        self.vf = tf.reshape(linear(x, 1, "value", tf.contrib.layers.xavier_initializer()), [-1])
        self.sample = categorical_sample(self.logits, ac_space)[0, :]
        self.var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, tf.get_variable_scope().name)
        self.state_in = []
项目:human-rl    作者:gsastry    | 项目源码 | 文件源码
def __init__(self, ob_space, ac_space, size=256, **kwargs):
        self.x = x = tf.placeholder(tf.float32, [None] + list(ob_space))

        for i in range(4):
            x = tf.nn.elu(conv2d(x, 32, "l{}".format(i + 1), [3, 3], [2, 2]))
        # introduce a "fake" batch dimension of 1 after flatten so that we can do GRU over time dim
        x = tf.expand_dims(flatten(x), 1)

        gru = rnn.GRUCell(size)

        h_init = np.zeros((1, size), np.float32)
        self.state_init = [h_init]
        h_in = tf.placeholder(tf.float32, [1, size])
        self.state_in = [h_in]

        gru_outputs, gru_state = tf.nn.dynamic_rnn(
            gru, x, initial_state=h_in, sequence_length=[size], time_major=True)
        x = tf.reshape(gru_outputs, [-1, size])
        self.logits = linear(x, ac_space, "action", normalized_columns_initializer(0.01))
        self.vf = tf.reshape(linear(x, 1, "value", normalized_columns_initializer(1.0)), [-1])
        self.state_out = [gru_state[:1]]
        self.sample = categorical_sample(self.logits, ac_space)[0, :]
        self.var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, tf.get_variable_scope().name)
项目:distributional_perspective_on_RL    作者:Kiwoo    | 项目源码 | 文件源码
def __init__(self, shape, name=None):
        """Takes input in uint8 format which is cast to float32 and divided by 255
        before passing it to the model.

        On GPU this ensures lower data transfer times.

        Parameters
        ----------
        shape: [int]
            shape of the tensor.
        name: str
            name of the underlying placeholder
        """

        super().__init__(tf.placeholder(tf.uint8, [None] + list(shape), name=name))
        self._shape = shape
        self._output = tf.cast(super().get(), tf.float32) / 255.0
项目:tensorflow_qrnn    作者:icoxfog417    | 项目源码 | 文件源码
def test_qrnn_linear_forward(self):
        batch_size = 100
        sentence_length = 5
        word_size = 10
        size = 5
        data = self.create_test_data(batch_size, sentence_length, word_size)

        with tf.Graph().as_default() as q_linear:
            qrnn = QRNN(in_size=word_size, size=size, conv_size=1)
            X = tf.placeholder(tf.float32, [batch_size, sentence_length, word_size])
            forward_graph = qrnn.forward(X)

            with tf.Session() as sess:
                sess.run(tf.global_variables_initializer())
                hidden = sess.run(forward_graph, feed_dict={X: data})
                self.assertEqual((batch_size, size), hidden.shape)
项目:tensorflow_qrnn    作者:icoxfog417    | 项目源码 | 文件源码
def test_qrnn_with_previous(self):
        batch_size = 100
        sentence_length = 5
        word_size = 10
        size = 5
        data = self.create_test_data(batch_size, sentence_length, word_size)

        with tf.Graph().as_default() as q_with_previous:
            qrnn = QRNN(in_size=word_size, size=size, conv_size=2)
            X = tf.placeholder(tf.float32, [batch_size, sentence_length, word_size])
            forward_graph = qrnn.forward(X)

            with tf.Session() as sess:
                sess.run(tf.global_variables_initializer())
                hidden = sess.run(forward_graph, feed_dict={X: data})
                self.assertEqual((batch_size, size), hidden.shape)
项目:tensorflow_qrnn    作者:icoxfog417    | 项目源码 | 文件源码
def test_qrnn_convolution(self):
        batch_size = 100
        sentence_length = 5
        word_size = 10
        size = 5
        data = self.create_test_data(batch_size, sentence_length, word_size)

        with tf.Graph().as_default() as q_conv:
            qrnn = QRNN(in_size=word_size, size=size, conv_size=3)
            X = tf.placeholder(tf.float32, [batch_size, sentence_length, word_size])
            forward_graph = qrnn.forward(X)

            with tf.Session() as sess:
                sess.run(tf.global_variables_initializer())
                hidden = sess.run(forward_graph, feed_dict={X: data})
                self.assertEqual((batch_size, size), hidden.shape)
项目:dl-classification    作者:matthieuo    | 项目源码 | 文件源码
def __init__(self, check_):
        self.img_feed = tf.placeholder(tf.float32)

        self.output_logits = tf.nn.softmax(
            models.foodv_test(
                self.img_feed,
                reg_val=0.0,
                is_train=False,
                dropout_p=1.0))

        self.sess = tf.Session()

        self.checkpoint_name = check_

        saver = tf.train.Saver()
        print("loading model...")

        saver.restore(self.sess, self.checkpoint_name)

        print("Model loaded !")
项目:deep-learning    作者:ljanyst    | 项目源码 | 文件源码
def __init__(self, embedding):
        self.sess         = tf.Session()
        self.inputs       = tf.placeholder(tf.float32,
                                           [None, embedding.shape[1]],
                                           name='inputs')
        self.test_vec     = tf.placeholder(tf.float32, [1, embedding.shape[1]],
                                           name='test_vec')
        self.cos_distance = tf.matmul(self.inputs, tf.transpose(self.test_vec))

        #-----------------------------------------------------------------------
        # Compute normalized embedding matrix
        #-----------------------------------------------------------------------
        row_sum    = tf.reduce_sum(tf.square(self.inputs), axis=1,
                                   keep_dims=True)
        norm       = tf.sqrt(row_sum)
        self.normalized = self.inputs / norm
        self.embedding = self.sess.run(self.normalized,
                                       feed_dict={self.inputs: embedding})

    #---------------------------------------------------------------------------
项目:deep-learning    作者:ljanyst    | 项目源码 | 文件源码
def __init__(self, rnd_vec_dim, hidden_units, output_dim, alpha):
        #-----------------------------------------------------------------------
        # Inputs
        #-----------------------------------------------------------------------
        self.inputs_rnd  = tf.placeholder(tf.float32, (None, rnd_vec_dim),
                                          name='inputs_rnd')

        #-----------------------------------------------------------------------
        # The generator
        #-----------------------------------------------------------------------
        self.alpha = alpha
        with tf.variable_scope('generator'):
            h1 = tf.layers.dense(self.inputs_rnd, hidden_units, activation=None)
            h1 = LeakyReLU(h1, self.alpha)

            self.gen_logits = tf.layers.dense(h1, output_dim, activation=None)
            self.gen_out    = tf.tanh(self.gen_logits)

    #---------------------------------------------------------------------------
项目:Imitation-Learning-Dagger-Torcs    作者:zsdonghao    | 项目源码 | 文件源码
def __init__(self, name='model', sess=None):
        assert sess != None
        self.name = name
        self.sess = sess

        self.x = tf.placeholder(tf.float32, [None, img_dim[0], img_dim[1], img_dim[2]], name='Observaion')
        self.y = tf.placeholder(tf.float32, [None, n_action], name='Steer')

        self._build_net(True, False)
        self._build_net(False, True)
        self._define_train_ops()

        tl.layers.initialize_global_variables(self.sess)

        print()
        self.n_test.print_layers()
        print()
        self.n_test.print_params(False)
        print()
        # exit()
项目:Renewables_Scenario_Gen_GAN    作者:chennnnnyize    | 项目源码 | 文件源码
def build_model(self):

        Z = tf.placeholder(tf.float32, [self.batch_size, self.dim_z])
        Y = tf.placeholder(tf.float32, [self.batch_size, self.dim_y])

        image_real = tf.placeholder(tf.float32, [self.batch_size]+self.image_shape)
        h4 = self.generate(Z,Y)
        #image_gen comes from sigmoid output of generator
        image_gen = tf.nn.sigmoid(h4)

        raw_real2 = self.discriminate(image_real, Y)
        #p_real = tf.nn.sigmoid(raw_real)
        p_real=tf.reduce_mean(raw_real2)

        raw_gen2 = self.discriminate(image_gen, Y)
        #p_gen = tf.nn.sigmoid(raw_gen)
        p_gen = tf.reduce_mean(raw_gen2)

        discrim_cost = tf.reduce_sum(raw_real2) - tf.reduce_sum(raw_gen2)
        gen_cost = -tf.reduce_mean(raw_gen2)

        return Z, Y, image_real, discrim_cost, gen_cost, p_real, p_gen
项目:Renewables_Scenario_Gen_GAN    作者:chennnnnyize    | 项目源码 | 文件源码
def samples_generator(self, batch_size):
        Z = tf.placeholder(tf.float32, [batch_size, self.dim_z])
        Y = tf.placeholder(tf.float32, [batch_size, self.dim_y])

        yb = tf.reshape(Y, [batch_size, 1, 1, self.dim_y])
        Z_ = tf.concat([Z,Y], 1)
        h1 = tf.nn.relu(batchnormalize(tf.matmul(Z_, self.gen_W1)))
        h1 = tf.concat([h1, Y], 1)
        h2 = tf.nn.relu(batchnormalize(tf.matmul(h1, self.gen_W2)))
        h2 = tf.reshape(h2, [batch_size,6,6,self.dim_W2])
        h2 = tf.concat([h2, yb*tf.ones([batch_size, 6,6, self.dim_y])], 3)

        output_shape_l3 = [batch_size,12,12,self.dim_W3]
        h3 = tf.nn.conv2d_transpose(h2, self.gen_W3, output_shape=output_shape_l3, strides=[1,2,2,1])
        h3 = tf.nn.relu( batchnormalize(h3) )
        h3 = tf.concat([h3, yb*tf.ones([batch_size, 12,12,self.dim_y])], 3)

        output_shape_l4 = [batch_size,24,24,self.dim_channel]
        h4 = tf.nn.conv2d_transpose(h3, self.gen_W4, output_shape=output_shape_l4, strides=[1,2,2,1])
        x = tf.nn.sigmoid(h4)
        return Z, Y, x
项目:lung-cancer-detector    作者:YichenGong    | 项目源码 | 文件源码
def __init__(self, channels=3, n_class=2, cost="cross_entropy", cost_kwargs={}, **kwargs):
        tf.reset_default_graph()

        self.n_class = n_class
        self.summaries = kwargs.get("summaries", True)

        self.x = tf.placeholder("float", shape=[None, None, None, channels])
        self.y = tf.placeholder("float", shape=[None, None, None, n_class])
        self.keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)

        logits, self.variables, self.offset = create_conv_net(self.x, self.keep_prob, channels, n_class, **kwargs)

        self.cost = self._get_cost(logits, cost, cost_kwargs)

        self.gradients_node = tf.gradients(self.cost, self.variables)

        self.cross_entropy = tf.reduce_mean(cross_entropy(tf.reshape(self.y, [-1, n_class]),
                                                          tf.reshape(pixel_wise_softmax_2(logits), [-1, n_class])))

        self.predicter = pixel_wise_softmax_2(logits)
        self.correct_pred = tf.equal(tf.argmax(self.predicter, 3), tf.argmax(self.y, 3))
        self.accuracy = tf.reduce_mean(tf.cast(self.correct_pred, tf.float32))
项目:snake    作者:rhinech    | 项目源码 | 文件源码
def __init__(self,
                 name,
                 size_input__layer,
                 size_hidden_layer,
                 size_output_layer,
                 l2_coeff,
                 keep_prob,
                 optimizer='SGD'):
        """Make new tensors and connect them."""

        self.size_input__layer = size_input__layer
        self.size_hidden_layer = size_hidden_layer
        self.size_output_layer = size_output_layer
        self.keep_prob = keep_prob
        self.input__placeholder = tf.placeholder(tf.float32, shape=(None, size_input__layer))
        self.answer_placeholder = tf.placeholder(tf.float32, shape=(None, size_output_layer))
        self.learning_rate = tf.placeholder(tf.float32)
        self.inference_proc, l2_proc = self.inference(self.input__placeholder, name)
        self.loss_proc = NN.loss(self.inference_proc, l2_proc, l2_coeff, self.answer_placeholder)
        self.training_proc = NN.training(self.loss_proc, self.learning_rate, optimizer)
项目:DeepWorks    作者:daigo0927    | 项目源码 | 文件源码
def _build_graph(self, image_size):

        self.image_size = image_size
        self.images = tf.placeholder(tf.float32,
                                     shape = (None, image_size, image_size, 3))
        images_mini = tf.image.resize_images(self.images,
                                             size = (int(image_size/4),
                                                     int(image_size/4)))
        self.images_blur = tf.image.resize_images(images_mini,
                                                  size = (image_size, image_size))

        self.net = U_Net(output_ch = 3, block_fn = 'origin')
        self.images_reconst = self.net(self.images_blur, reuse = False)
        # self.image_reconst can be [-inf +inf], so need to clip its value if visualize them as images.
        self.loss = tf.reduce_mean((self.images_reconst - self.images)**2)
        self.opt = tf.train.AdamOptimizer()\
                           .minimize(self.loss, var_list = self.net.vars)

        self.saver = tf.train.Saver()
        self.sess.run(tf.global_variables_initializer())
项目:kaggle-review    作者:daxiongshu    | 项目源码 | 文件源码
def predictPL(self):
        B = self.flags.batch_size
        W,H,C = self.flags.width, self.flags.height, self.flags.color
        inputs = tf.placeholder(dtype=tf.float32,shape=[None,H,W,C])

        #with open(self.flags.pred_path,'w') as f:
        #    pass

        self._build(inputs,resize=False)
        counter = 0
        with tf.Session() as sess:
            self.sess = sess
            sess.run(tf.global_variables_initializer())
            sess.run(tf.local_variables_initializer())
            for imgs,imgnames in self.DATA.test_generator():
                pred = sess.run(self.logit,feed_dict={inputs:imgs})
                np.save("%s/%d.npy"%(self.flags.pred_path,counter),{"pred":pred,"name":imgnames})
                counter+=len(imgs)
                if counter/B%10 ==0:
                    print_mem_time("%d images predicted"%counter)

    # train with placeholders
项目:kaggle-review    作者:daxiongshu    | 项目源码 | 文件源码
def _build(self):
        V = self.V
        M = self.flags.embedding_size # 64
        H = self.flags.num_units 
        C = self.flags.classes
        D = self.flags.d2v_size # embedding for d2v

        netname = "D2V"
        with tf.variable_scope(netname):
            self.inputs = tf.placeholder(dtype=tf.int32,shape=[None]) #[B]
            layer_name = "{}/embedding".format(netname)
            x = self._get_embedding(layer_name, self.inputs, V, D, reuse=False) # [B, S, M]

        netname = "NN"
        cell_name = self.flags.cell
        H1,H2 = 32,16
        with tf.variable_scope(netname):
            net = self._fc(x, fan_in=D, fan_out=H1, layer_name="%s/fc1"%netname, activation='relu')
            net = self._dropout(net)
            net = self._fc(net, fan_in=H1, fan_out=H2, layer_name="%s/fc2"%netname, activation='relu')
            net = self._dropout(net)
            net = self._fc(net, fan_in=H2, fan_out=C, layer_name="%s/fc3"%netname, activation=None)
            self.logit = net
项目:kaggle-review    作者:daxiongshu    | 项目源码 | 文件源码
def _build(self):
        netname = "CBOW"
        W = self.flags.window_size
        M = self.flags.embedding_size
        V = self.V # vocabulary size, should be passed from DB
        H = 128

        # the real window is W*2 + 1
        with tf.variable_scope(netname):
            self.inputs = tf.placeholder(tf.int32, shape=(None,W*2+1)) # [B, W*2+1]

            layer_name = "{}/embedding".format(netname)
            x = self._get_embedding(layer_name, self.inputs, V, M, reuse=False) # [B, W*2+1, M]
            x = tf.reshape(x,[tf.shape(x)[0],tf.shape(x)[1]*tf.shape(x)[2]]) # [B,(W*2+1)*M]

            layer_name = "{}/fc1".format(netname)
            net = self._fc(x, fan_in=M*(W*2+1), fan_out=H, layer_name=layer_name, 
                    activation='relu') # [B, H]

            layer_name = "{}/fc2".format(netname)
            net = self._fc(net, fan_in=H, fan_out=2, layer_name=layer_name, 
                    activation=None) # [B, 2]

            self.logit = net
项目:comprehend    作者:Fenugreek    | 项目源码 | 文件源码
def rnn_extend(sess, coder, inputs, skips=None, length=1):
    """
    inputs is batch_size x n_consecutive_seqs x n_visible x seq_length.
    """

    shape = inputs.shape
    n_seqs =  shape[1]
    batch = tf.placeholder(coder.dtype, name='batch_seq',
                           shape=(shape[0], shape[2], shape[3]))

    coder.reset_state()
    output = coder.recode(batch, store=True, skips=skips)

    outputs = []
    for index in range(n_seqs):
        batch_seq = inputs[:, index, :, :]
        o, s = sess.run([output, coder.get_state()], feed_dict={batch: batch_seq})
        outputs.append(o)


    outputs.append(coder.predict_sequence(None,
                                          s['hidden'],
                                          length=length*shape[3]).eval())

    return np.array(outputs)
项目:comprehend    作者:Fenugreek    | 项目源码 | 文件源码
def __init__(self, sigma=0.1, beta_sampling=True, **kwargs):
        """
        sigma:
        Standard deviation of input data, for use in sampling.

        beta_sampling:
        Use beta distribution for sampling, instead of Gaussian.
        """

        RBM.__init__(self, **kwargs)
        if not kwargs.get('fromfile'):
            self.sigma = sigma
            self.beta_sampling = beta_sampling
        if self.sigma is None: raise AssertionError('Need to supply sigma param.')

        self.hidden = tf.placeholder(self.dtype, name='hidden',
                                     shape=[None, self.n_hidden])
        self.mean_v = tf.sigmoid(tf.matmul(self.hidden, self.params['W'],
                                           transpose_b=True) +
                                 self.params['bvis'])
项目:text_classification    作者:brightmart    | 项目源码 | 文件源码
def init():
    #1. assign value to fields
    vocab_size=1000
    d_model = 512
    d_k = 64
    d_v = 64
    sequence_length = 5*10
    h = 8
    batch_size=4*32
    initializer = tf.random_normal_initializer(stddev=0.1)
    # 2.set values for Q,K,V
    vocab_size=1000
    embed_size=d_model
    Embedding = tf.get_variable("Embedding_E", shape=[vocab_size, embed_size],initializer=initializer)
    input_x = tf.placeholder(tf.int32, [batch_size,sequence_length], name="input_x") #[4,10]
    print("input_x:",input_x)
    embedded_words = tf.nn.embedding_lookup(Embedding, input_x) #[batch_size*sequence_length,embed_size]
    Q = embedded_words  # [batch_size*sequence_length,embed_size]
    K_s = embedded_words  # [batch_size*sequence_length,embed_size]
    num_layer=6
    mask = get_mask(batch_size, sequence_length)
    #3. get class object
    encoder_class=Encoder(d_model,d_k,d_v,sequence_length,h,batch_size,num_layer,Q,K_s,mask=mask) #Q,K_s,embedded_words
    return encoder_class,Q,K_s
项目:ddpg-aigym    作者:stevenpjg    | 项目源码 | 文件源码
def create_critic_net(self, num_states=4, num_actions=1):
        N_HIDDEN_1 = 400
        N_HIDDEN_2 = 300
        critic_state_in = tf.placeholder("float",[None,num_states])
        critic_action_in = tf.placeholder("float",[None,num_actions])    

        W1_c = tf.Variable(tf.random_uniform([num_states,N_HIDDEN_1],-1/math.sqrt(num_states),1/math.sqrt(num_states)))
        B1_c = tf.Variable(tf.random_uniform([N_HIDDEN_1],-1/math.sqrt(num_states),1/math.sqrt(num_states)))
        W2_c = tf.Variable(tf.random_uniform([N_HIDDEN_1,N_HIDDEN_2],-1/math.sqrt(N_HIDDEN_1+num_actions),1/math.sqrt(N_HIDDEN_1+num_actions)))    
        W2_action_c = tf.Variable(tf.random_uniform([num_actions,N_HIDDEN_2],-1/math.sqrt(N_HIDDEN_1+num_actions),1/math.sqrt(N_HIDDEN_1+num_actions)))    
        B2_c= tf.Variable(tf.random_uniform([N_HIDDEN_2],-1/math.sqrt(N_HIDDEN_1+num_actions),1/math.sqrt(N_HIDDEN_1+num_actions))) 
        W3_c= tf.Variable(tf.random_uniform([N_HIDDEN_2,1],-0.003,0.003))
        B3_c= tf.Variable(tf.random_uniform([1],-0.003,0.003))

        H1_c=tf.nn.softplus(tf.matmul(critic_state_in,W1_c)+B1_c)
        H2_c=tf.nn.tanh(tf.matmul(H1_c,W2_c)+tf.matmul(critic_action_in,W2_action_c)+B2_c)

        critic_q_model=tf.matmul(H2_c,W3_c)+B3_c


        return W1_c, B1_c, W2_c, W2_action_c, B2_c, W3_c, B3_c, critic_q_model, critic_state_in, critic_action_in
项目:ddpg-aigym    作者:stevenpjg    | 项目源码 | 文件源码
def create_actor_net(self, num_states=4, num_actions=1):
        """ Network that takes states and return action """
        N_HIDDEN_1 = 400
        N_HIDDEN_2 = 300
        actor_state_in = tf.placeholder("float",[None,num_states])    
        W1_a=tf.Variable(tf.random_uniform([num_states,N_HIDDEN_1],-1/math.sqrt(num_states),1/math.sqrt(num_states)))
        B1_a=tf.Variable(tf.random_uniform([N_HIDDEN_1],-1/math.sqrt(num_states),1/math.sqrt(num_states)))
        W2_a=tf.Variable(tf.random_uniform([N_HIDDEN_1,N_HIDDEN_2],-1/math.sqrt(N_HIDDEN_1),1/math.sqrt(N_HIDDEN_1)))
        B2_a=tf.Variable(tf.random_uniform([N_HIDDEN_2],-1/math.sqrt(N_HIDDEN_1),1/math.sqrt(N_HIDDEN_1)))
        W3_a=tf.Variable(tf.random_uniform([N_HIDDEN_2,num_actions],-0.003,0.003))
        B3_a=tf.Variable(tf.random_uniform([num_actions],-0.003,0.003))

        H1_a=tf.nn.softplus(tf.matmul(actor_state_in,W1_a)+B1_a)
        H2_a=tf.nn.tanh(tf.matmul(H1_a,W2_a)+B2_a)
        actor_model=tf.matmul(H2_a,W3_a) + B3_a
        return W1_a, B1_a, W2_a, B2_a, W3_a, B3_a, actor_state_in, actor_model
项目:C3D-tensorflow    作者:hx173149    | 项目源码 | 文件源码
def placeholder_inputs(batch_size):
  """Generate placeholder variables to represent the input tensors.

  These placeholders are used as inputs by the rest of the model building
  code and will be fed from the downloaded data in the .run() loop, below.

  Args:
    batch_size: The batch size will be baked into both placeholders.

  Returns:
    images_placeholder: Images placeholder.
    labels_placeholder: Labels placeholder.
  """
  # Note that the shapes of the placeholders match the shapes of the full
  # image and label tensors, except the first dimension is now batch_size
  # rather than the full size of the train or test data sets.
  images_placeholder = tf.placeholder(tf.float32, shape=(batch_size,
                                                         c3d_model.NUM_FRAMES_PER_CLIP,
                                                         c3d_model.CROP_SIZE,
                                                         c3d_model.CROP_SIZE,
                                                         c3d_model.CHANNELS))
  labels_placeholder = tf.placeholder(tf.int64, shape=(batch_size))
  return images_placeholder, labels_placeholder
项目:C3D-tensorflow    作者:hx173149    | 项目源码 | 文件源码
def placeholder_inputs(batch_size):
  """Generate placeholder variables to represent the input tensors.
  These placeholders are used as inputs by the rest of the model building
  code and will be fed from the downloaded data in the .run() loop, below.
  Args:
    batch_size: The batch size will be baked into both placeholders.
  Returns:
    images_placeholder: Images placeholder.
    labels_placeholder: Labels placeholder.
  """
  # Note that the shapes of the placeholders match the shapes of the full
  # image and label tensors, except the first dimension is now batch_size
  # rather than the full size of the train or test data sets.
  images_placeholder = tf.placeholder(tf.float32, shape=(batch_size,
                                                         c3d_model.NUM_FRAMES_PER_CLIP,
                                                         c3d_model.CROP_SIZE,
                                                         c3d_model.CROP_SIZE,
                                                         c3d_model.CHANNELS))
  labels_placeholder = tf.placeholder(tf.int64, shape=(batch_size))
  return images_placeholder, labels_placeholder
项目:tf-image-interpreter    作者:ThoughtWorksInc    | 项目源码 | 文件源码
def test_vgg():
  vgg = Vgg16()
  image_tensor = tf.placeholder(tf.float32)
  with tf.Session() as sess:
    vgg.build(image_tensor)
    init = tf.initialize_all_variables()
    sess.run(init)

    load_feature_layer_params('/Users/dtong/code/data/tf-image-interpreter/pretrain/vgg16_weights.npz', sess)

    for v in tf.get_collection(tf.GraphKeys.VARIABLES):
      print_op = tf.Print(v, [v], message=v.name, first_n=10)
      sess.run(print_op)

    roidb = RoiDb('val.txt', 2007)
    batch_gen = BatchGenerator(roidb)

    for i in range(10):
      image, scale, bboxes = batch_gen.next_batch()

      print(sess.run(vgg.conv5_3, feed_dict={image_tensor: image}))
项目:tf-image-interpreter    作者:ThoughtWorksInc    | 项目源码 | 文件源码
def main():
  roidb = RoiDb('val.txt', 2007)
  batch_gen = BatchGenerator(roidb)

  image_tensor = tf.placeholder(dtype=tf.float32)
  scale_tensor = tf.placeholder(dtype=tf.float32)
  bboxes_tensor = tf.placeholder(dtype=tf.float32)
  p_op = tf.Print(image_tensor, [tf.shape(image_tensor), scale_tensor, bboxes_tensor])

  sess = tf.Session()
  init = tf.initialize_all_variables()
  sess.run(init)

  coord = tf.train.Coordinator()
  queue_threads = queue_runner.start_queue_runners(sess, coord=coord)

  for i in range(10):
    if coord.should_stop():
      break
    image, scale, bboxes = batch_gen.next_batch()

    sess.run([p_op], feed_dict={image_tensor: image, scale_tensor: scale, bboxes_tensor:bboxes})

  coord.request_stop()
  coord.join(queue_threads)
项目:tf-image-interpreter    作者:ThoughtWorksInc    | 项目源码 | 文件源码
def test_rpn():
  vgg = Vgg16()
  rpn = RpnNet()
  image_tensor = tf.placeholder(tf.float32)
  with tf.Session() as sess:
    vgg.build(image_tensor)
    rpn.build(vgg.conv5_3, None)
    init = tf.initialize_all_variables()
    sess.run(init)

    load_feature_layer_params('/Users/dtong/code/data/tf-image-interpreter/pretrain/vgg16_weights.npz', sess)

    roidb = RoiDb('val.txt', 2007)
    batch_gen = BatchGenerator(roidb)

    for i in range(10):
      image, scale, bboxes = batch_gen.next_batch()
      feature_shape = tf.shape(rpn.rpn_cls_score_reshape)
      print_feat_shape = tf.Print(feature_shape, [feature_shape], summarize=5)
      sess.run(print_feat_shape, feed_dict={image_tensor: image})

      # print(sess.run(vgg.conv5_3, feed_dict={image_tensor: image}))
项目:X-ray-classification    作者:bendidi    | 项目源码 | 文件源码
def __init__(self):
    # Initializes function that decodes RGB png data.
    self._decode_png_data = tf.placeholder(dtype=tf.string)
    self._decode_png = tf.image.decode_png(self._decode_png_data, channels=3)
项目:IntroToDeepLearning    作者:robb-brown    | 项目源码 | 文件源码
def initialize(self):
        with tf.variable_scope(self.name):
            self.keepProb = tf.placeholder('float')         # Variable to hold the dropout probability
项目:IntroToDeepLearning    作者:robb-brown    | 项目源码 | 文件源码
def initialize(self):
        with tf.variable_scope(self.name):
            self.keepProb = tf.placeholder('float')         # Variable to hold the dropout probability
项目:almond-nnparser    作者:Stanford-Mobisocial-IoT-Lab    | 项目源码 | 文件源码
def make_skipgram_softmax_loss(embeddings_matrix, vocabulary_size, vector_size):
    vectors = tf.get_variable('vectors', (vocabulary_size, vector_size), dtype=tf.float32, initializer=tf.constant_initializer(embeddings_matrix))
    minibatch = tf.placeholder(shape=(None, 2), dtype=tf.int32)

    center_word_vector = tf.nn.embedding_lookup(vectors, minibatch[:,0])
    yhat = tf.matmul(center_word_vector, vectors, transpose_b=True)

    predict_word = minibatch[:,1]
    loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=predict_word, logits=yhat)
    loss = tf.reduce_mean(loss)
    return vectors, minibatch, loss
项目:almond-nnparser    作者:Stanford-Mobisocial-IoT-Lab    | 项目源码 | 文件源码
def add_output_placeholders(self):
        self.top_placeholder = tf.placeholder(tf.int32, shape=(None,))
        self.special_label_placeholder = tf.placeholder(tf.int32, shape=(None, MAX_SPECIAL_LENGTH))
        self.part_function_placeholders = dict()
        self.part_sequence_placeholders = dict()
        self.part_sequence_length_placeholders = dict()
        for part in ('trigger', 'query', 'action'):
            self.part_function_placeholders[part] = tf.placeholder(tf.int32, shape=(None,))
            self.part_sequence_placeholders[part] = tf.placeholder(tf.int32, shape=(None, MAX_PRIMITIVE_LENGTH))
            self.part_sequence_length_placeholders[part] = tf.placeholder(tf.int32, shape=(None,))
项目:almond-nnparser    作者:Stanford-Mobisocial-IoT-Lab    | 项目源码 | 文件源码
def add_input_placeholders(self):
        self.input_placeholder = tf.placeholder(tf.int32, shape=(None, self.config.max_length))
        self.input_length_placeholder = tf.placeholder(tf.int32, shape=(None,))
        self.constituency_parse_placeholder = tf.placeholder(tf.bool, shape=(None, 2*self.config.max_length-1))
项目:almond-nnparser    作者:Stanford-Mobisocial-IoT-Lab    | 项目源码 | 文件源码
def add_output_placeholders(self):
        self.output_placeholder = tf.placeholder(tf.int32, shape=(None, self.config.max_length))
        self.output_length_placeholder = tf.placeholder(tf.int32, shape=(None,))
项目:almond-nnparser    作者:Stanford-Mobisocial-IoT-Lab    | 项目源码 | 文件源码
def add_extra_placeholders(self):
        self.batch_number_placeholder = tf.placeholder(tf.int32, shape=())
        self.dropout_placeholder = tf.placeholder(tf.float32, shape=())